気液2相型アルゴン光TPCの研究開発

早稲田大学 木村 眞人 (ANKOK Group)

2019.12.06 | MPGD&TPC合同研究会 @ 理研-和光

	LHe	LNe	LAr	LKr	LXe	NaI(Tl)	水
沸点@大気圧(K)	4.2	27	87 (→低温)	120	165	1600	373
密度 (g/cm ³)	0.125	1.2	1.4	2.4	3.0	3.67	1
放射長 (cm)	755	24	13	4.9	2.8	2.6	36
W值 (蛍光) (eV)	100	26	19.5	15.5	14.7	40000 ph/MeV	
W值 (電離) (eV)	42.3	36.6	23.3	18.6	15.6		
蛍光波長 (nm)	80	78	128	150	175	420	
時定数 (Singlet)	10 ns	18 ns	<u>6 ns</u>	8.6 ns	4 ns	200 ns	
時定数 (Triplet)	13 s	15 µs	1.6 µs	350 ns	22 ns	/ 1 µs	
大気中の割合 (%)	5×10-4	2×10-3	0.93(→安価)	1×10-4	9×10-6		< 4

A.Hitachi et al., Phys.Rev.B 27, 9 (1983)

荷電粒子と液体アルゴンが相互作用, **軌跡に沿って電離電子**を生成 - ~40,000 e- / MeV - **電子:アルゴン中をドリフト** (Arは無極性, 不純物 (O₂, H₂O) があると吸収される)

飛跡検出器 (TPC) として機能

- 電荷 (xy) + 光信号と電荷信号の時間差 (z)

File: physicsoct12_1 / i: 25 / Spill: 27 / Event: 2949

荷電粒子との相互作用でシンチレーション光を放出 - ~40,000 photon/MeV (電離電子も0電場下では再結合して光子に変換) - 波長:128 nm (真空紫外) (2量体の脱励起よる放出,アルゴンはほぼ透明) : シンチレーション波形による強力な粒子弁別 - dE/dxにより二量体の励起状態比 (¹Σ or ³Σ) が変化 Light Yield (arb.) *Fast:* τ ~ 6 ns 二量体 Ar - : ER Events : NR Events *Slow:* τ ~ 1.5 μs Ar Ar原子校 (► Ar Andrewell of the Andrewell of the state 10- Ar_{2^+} 10 0 2 4 6 Time (µs)

Double-Phase Argon TPC^b

- :気液2相型アルゴン光TPC ドリフト電子を高電場 (>3 kV/cm) で気相へ取り出し
- : シンチレーション光 (S1) と,
 - 電離電子によるエレクトロルミネセンス光 (S2) を検出
 - 低エネルギー (~keV or 1電子信号) 事象に有感 & 3次元位置再構成 ("TPC")
 - 電子反跳事象と原子核反跳事象を強力に弁別 (S1波形⊗S2/S1比)
- Nuclear **S1** Recoil (*x*/n)

time

- DarkSide (伊米等) @ Gran Sasso⁸
 - 暗黒物質 (WIMP) 直接探索実験
 - "DarkSide-20k": Ar2相光TPC 39t
 - 建設中,~2023年実験開始予定

ANKOK Group 液体アルゴン光検出器による 宇宙暗黒物質直接探索実験 (R&D phase) - 低質量WIMP (<10 GeV/c²) 探索に主眼 低エネルギー (~10 keV) 稀事象探索 - 高感度検出器構築と, 検出器応答の詳細理解(背景事象分離)が鍵

最近の成果

- "Measurement of the scintillation efficiency for nuclear recoils in liquid argon under electric fields up to 3 kV/cm["], PRD 100 (2019), 032002.
- "Scintillation and Ionization Ratio of Liquid Argon for Electronic and Nuclear Recoils at Drift-Fields up to 3 kV/cm", NIMA 910 (2018), 22-25.
- "Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light", NIMA 833 (2016), 239-244.
- ・"気液2相型アルゴン光TPC検出器による暗黒物質探索実験 (ANKOK)", 高エネ ルギーニュース Vol.36 No.4 180-188 (2018)

 10^{-3}

Recoil Energy (keV)

Test stand at Waseda

- : 200L cryostat and liquefier,
- : Liquid argon (LAr) filling through cryogenic filter,
- : Gas argon (GAr) recirculation and liquefaction.
- We achieved :
- ~1 month of stable operation,
- 0.5 mm liquid surface control,
- Contamination removal from LAr. (Electron lifetime $\tau \sim 1.5$ ms).

genic filter, efaction.

 $\tau=1722.9\pm182.1\,\mu s$

200

300

Drift time (μ s)

R&D Detectors

(2017 - 2018)

(2017)

PMT x2, 気液2相, 高電場印加 $PMT \times 14$, 気液2相, 大型化

(2018 - 2019)

(2019)

(2019-2020)

PMT x2, 液1相, 大検出光量

PMT x2, SiPM x128, 液1相, 気1相, Gas (S2) Study 大検出光量

研究・開発項目

- ・気液2相型アルゴン光TPCの安定運用
 - 高純度アルゴンを安定運用するテストスタンド
 - TPC電場形成と高電圧 (~30 kV) 印加 🕕
- ・高感度検出器の構築
 - 光検出効率の最大化 2
- 検出器応答の詳細理解
 - 液体アルゴン応答の理解(光子/電子生成効率, 粒子識別能力, ...)
 - 検出器基礎特性 (エネルギー分解能, 位置分解能, <u>S2</u>特性) の測定
- ・背景事象の理解
- 液体アルゴン光検出器の発展可能性

= 2相検出器の電離チャンネル

- : Cockcroft-Watson回路を利用
 - AC入力 (~100 V),

→ 32 kV (3 kV/cm) の印加に成功

LAr光検出:128 nm @ 87 K

千江	光検出器				
ナム	PMT (QE)	SiPM			
直接検出	MgF2窓PMT	VUV-MPI			
(128 nm)	(20% @ 128 nm)	(10% @ 12			
波長変換	石英窓PMT	MPPC			
(128 → 420 nm)	(30% @ 420 nm)	(50% @ 42			
	Established	Ong			

・ 波長変換材TPBの真空蒸着と最適化

- ・蒸着場所:PMT窓面と反射材へTPB → "VUV変換率"と"可視光透過率"の最適化 [12]
- ・真空蒸着装置を構築, 膜厚センサー (QCM) で定量測定

TPB thickness[nm]

 液体1相検出器で光量測定:~12 p.e./keV → Nearly PMT QE Limit

S1 (p.e.)

光検出効率の向上

- : SiPM (可視光感度) を導入
 - 貫通電極 (TSV) -MPPC
 - → 高PDE・大有感面積化
 - アレイパッケージの利用・多チャンネル接続
 → 読み出し信号数を抑制
 - PMTに比べ約2倍の検出光量を期待
 - → 低エネルギー信号の検出, 波形弁別能力の向上, etc…
- : TSV-MPPCの低温 (LN2温度) 駆動を確認済 (浜松ホトニクス保証外)
 - MPPC-Array検出器を構築中, 1月に試験予定

アルゴン光検出器の基礎特性

高電場印加が可能なTPCや大光量検出器を用いた測定

- 原子核反跳に対する電離・蛍光効率、電場・エネルギー依存性 → Phys.Rev.D 100 (2019), 032002
- 電場下における事象弁別能力の定量評価 → NIMA 910, 22-25 (2018), 鷲見貴生 D論 (早稲田大学, 2018)
- 蛍光効率のエネルギー依存性 液体アルゴン光検出器のエネルギー分解能
- Ener 高い光収集効率の達成により実現 2.8 - 種々エネルギー較正源を利用 59.5

nergy	RI	Note	Energy	RI	Nc
2.82	³⁷ Ar	LAr内一様	356.0	¹³³ Ba	
59.54	²⁴¹ Am	α -tagging	511.0	²² Na	Back-to
109.8	¹⁹ F (n, γ)	²⁵² Cfを利用	661.7	¹³⁷ Cs	
197.1	¹⁹ F (n, γ)	²⁵² Cfを利用	1274.6	²² Na	

理論的には 高分解能 (~0.1% @ 1 MeV) が可能 - (T.Doke : Fano Factor ~ 0.1)

NIM 134 353

NUCLEAR INSTRUMENTS AND METHODS 134 (1976) 353-357; © NORTH-HOLLAND PUBLISHING CO.

ESTIMATION OF FANO FACTORS IN LIQUID ARGON, KRYPTON, XENON AND **XENON-DOPED LIQUID ARGON**

T. DOKE, A. HITACHI

Science and Engineering Resear S. KUBOTA, A. NAKAMO Department of Physics, Rikkyo and	TABLE 3 F_1 , F_2 , F_3 and F (Fano-factors) in liquid argon, krypton and xenon for Shockley's model and Alkhazov's model.						
T. TAKAHASHI Institute of Physical and Chemic Received 10 February 1976	Liquid	F ₁	F S-model	A-model	F ₃	l S-model	F A-model
Fano factors in liquid argon, kr parameters in the energy balan values for liquid argon, kryptor is smaller than that for liquid a small, i.e. about 0.05, which is a noise level which can easily be 1 MeV electrons.	Ar Kr Xe	0.076 0.032 0.019	0.027 0.024 0.021	0.036 0.037 0.039	0.004 0.001 0.0006	0.107 0.057 0.041	0.116 0.070 0.059

- 液体1相光検出器 (~12 p.e./keV) で実測
 - 2.2% @ 662 keV
 - Fano Factorに感度はない (光検出効率~0.3: PMT QEにリミット)

エネルギー分解能の回復

- 1光子分解能の向上
- : 電離チャンネルの併用

 - S1光量とS2光量の反相関

- O₂, H₂O < 1 ppbの不純物レベル (→ τ > 30 cm)

極低電離信号 (~1e-) に有感

O(10) p.e./e-正体不明の"数電子事象" 不純物に電子がトラップ? 液面に電子がトラップ? 部材からの光電効果?

: S2波形は電子反跳方向に有感 e. Data : ~1 MeV Electronic Recoil Counts 300 (⁶⁰Co Compton Edge) 200 Fitting function : Recoil track \otimes LAr drift diffusion \otimes 100 GAr drift time \otimes Scintillation lifetimes — Data — Fast 🛓 — Fit (Sum) — Slow

52の理解と利用

PRL 121 081307

中性制動放射 (Neutral Brems.)

新たなS2発光機構として提唱**

- ~10 eVの電子と原子核の散乱
- 低取り出し電場 (EL光閾値以下) から発光
- 発光波長は**可視光領域の連続スペクトラム**, 電場依存
- 存在の確証は未だ無い (可視光発光は確認されている)

** Astropart.Phys. 103 29

GArH*O* 中性制動放射

常温ガスTPCセットアップによる測定 VUV-PMT (R6835) + 可視光PMT (R11065) 光学フィルタを用いた波長スペクトラム測定

: 気液2相型アルゴン光TPC

- シンチレーション光と、電離電子由来のエレクトロルミネセンス光を観測
- 軌跡が作られないような低エネルギー事象にも有感 _
- : 低質量暗黒物質直接探索のための気液2相型アルゴン光TPCの開発
 - Liquid Argon Test Stand @ Waseda Univ.
 - 検出光量 (光収集効率) の最大化
 - → 世界最大光量を達成、さらなる向上に向けたR&D中
 - 液体アルゴン応答の定量理解
 - → 高電場・低エネルギー事象に対する応答を測定
 - 液体アルゴン光検出器の基礎特性評価 → エネルギー分解能の測定, エレクトロルミネセンス (S2) の詳細理解
- 検出器の高感度化による暗黒物質探索とともに, アルゴン光検出器の改良による他の物理実験への応用を進める (e.g. 光+電子読み出し)

Backup

WASEDA University

LAr-Scint.の基礎特性 : 直接励起 or 電離再結合によって二量体を形成し, 脱励起時に真空紫外光 (**λ=128 nm**)を放出。 直接励起 $Ar + (energy) \rightarrow Ar^*$ $\operatorname{Ar}^* + 2\operatorname{Ar} \rightarrow \operatorname{Ar}_2^*(\underline{\Sigma_u^+} \text{ or } \underline{\Sigma_u^+}) + \operatorname{Ar}$ $Ar_2^* \rightarrow 2Ar + h\nu$ "Slow" ($\tau = 1.6 \,\mu s$) 電離再結合 "Fast" ($\tau = 6 \text{ ns}$) $Ar + (energy) \rightarrow Ar^+ + e^ Ar^+ + Ar \rightarrow Ar_2^+$ $\operatorname{Ar}_2^+ + e^- \rightarrow \operatorname{Ar}^{**} + \operatorname{Ar}$ $Ar^{**} \rightarrow Ar^{*} + (heat)$ $\operatorname{Ar}^* + 2\operatorname{Ar} \rightarrow \operatorname{Ar}_2^*({}^1\Sigma_u^+ \text{ or } {}^3\Sigma_u^+) + \operatorname{Ar}$ $\operatorname{Ar}_2^* \rightarrow 2\operatorname{Ar} + h\nu$

- -
- : 4 MPPC / ch

