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Boundary condition for ZDC in EIC
=

Big aperture
4d4mrad = 12cm
Beam ~ 100 GeV

Size: £80 cm X 2m
Big enough

Dose for ep
— for300fb~1?
Dose for eA

— How much int. lumi?
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Energy or position resolution?

Tmm /33m = 0.03mrad = 3 MeV @ 100 GeV: 0.03%

Hadrons: 50%/VE @ 10 GeV = 17%, @100 GeV = 5%
Photons: 4% /VE @ 10 GeV = 1.3%, @100 MeV = 12%

Energy resolution is much more important
Position resolution: 1cm is enough

For HadCal:
1. compensation by hardware or software

2. Small leakage of shower: need big calorimeter

For EMCal: need non-sampling calorimetry
We should aim for 4% /VE



Aperiure enough?

eRHIC: 4mrad x 100 GeV = 400 MeV
— |t| < 0.2 GeVZ: not much ...

— OK for break-up neutrons
JLEIC: 10mrad, 1 GeV

— |t| < 1 GeV4: much better....
HERA: 0.5mrad = 0.5 GeV
LHeC: 0.35 mrad = 2.5 GeV
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Event rate for dose

Numbers from Elke's presentation

Event rate 600 kHz @ 1 x 103*cm™2s™! luminosity
— "DIS" cross section: 60 ub
* Sounds a bit small: LHeC 68 pb

— The events should be dominated by photoproduction:
may be order(s) of magnitude wrong?

beam-gas rate T0MHz assuming 10~° mbar = 10~7 Pa (Elke)

— Pessimistic assumption?
LHeC estimation is based on 1078 Pa
(HERA was 107° Pa near IP)

— Latifa's number in CFNS2019 workshop: 70kHz for 10~° mbar with HERA
IP and HERA counter: total rate may be hihger

AnyhOW |etls assume Elkels number https://indico.bnl.gov/event/4737/contributions/
24360/attachments/20396/27266/Latifa-SB.pdf

— 10'* events/year assuming 10 MHz


https://indico.bnl.gov/event/4737/contributions/24360/attachments/20396/27266/Latifa-SB.pdf

Radiation dose

100 GeV dose / event ~ 1.6 X 1078 Joule / event
ep event rate 600 kHz @ 1034 cm™2s~! - 0.01 Joule/s

— LHCf simulation (about 14;): Oep: 10730y, energy 1/70 ]
1/3 of dose in 1kg material (30Gy/nb for pp)

— For EIC ep this corresponds to 0.003 Gy/sec = 30kGy / year @ 103*

From beam-gas: 14 times larger
= 500kGy / year ?? Hope it would be rather 50kGy / yr

Radiation ~ O(100k - TMGy) or n., ~ 3 x 10**~13
for 1-year operation of ep (~ C. Hyde's number)
i.e. 101415 for lifetime

— eA luminosity/current 1/100 of ep? Then dose similar

— If the current is only 1/10 the dose would be a few times higher



Plastic scintillators?

e Silicon and LYSO should be OK for the dose

* How about plastic scintillators?

— Very good resolution for hadrons

« Some plastic like PEN stands for >0.1 MGy radiation
— http://inspirehep.net/record/1454399

— Light yield decreases to 46.7% after 0.14 MGy to 50%, but recovers to
79.5% after 9 days

* maybe too sensitive to accelerator operation condition:
difficult to calibrate?

— OK for cells of calorimeters outside the core of hadronic shower?

* Need simulation
— Silicon may have comparable resolution

* much more expensive, though


http://inspirehep.net/record/1454399
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Physics with proton tagging for ep

* Exclusive measurements

— Diffraction, VM production (Anna, Paul ...)

— QED processes ep — eyp etc.

— Higgs thru WW fusion, reconstruction via elastically scattered proton (??)
Soft vertex: § = 1 —xp < 1,pr = Agep = 0(200MeV)
= 1073 < £ < 0.05 (or larger), pr < afew GeV

* |nclusive measurements ZEUS
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Neuiron tagging for ep

* |Inclusive measurement @ HERA:

ZEUS g

— supporting one-pion exchange Q| + zeUs95-960' <002Ge (o)
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° production by LHCf and ATLAS

. |mpact to cosmic ray - ATLAS-CONF-2017-075
. . ,'I__‘ [ [ 1T 1T ‘ T | T T | [ IE
simulation E ATLAS-LHCf Preliminary -
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Proton/neutron tagged eD/eA DIS

* Proton-tagged eD and eA scattering
— e(p +n) » en+p DIS for neutron!

— Way to understand
nuclear (EMC) effect
or short-range correlation (SRC)
by comparing small and large system

* Neutron-tagged (ep + n):

— Cross-check with ep runs

€ Leading
Nucleon
recoiling Drawings from talk by F. Hauenstein,
spectator CFNS & RBRC workshop

https://indico.bnl.gov/event/6568/
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For bigger nucleus

 Diffraction and Ultra-Peripheral Collisions (UPC) :
A may break up (Brian's talk)

B - ,
multiplicity and energy of neutron vs t - ALICE ZDC (A-side)

— Dissociated particles tagged by FPS? with and Yvithlout
. activities in plug area
(Paul's talk 2018) 2 76 TeV run
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Beam-gas interactions

U First and foremost, need an excellent vacuum

1 Some estimations

O Assumptions of the vacuum and layout from other facilities (HERA, LHC)

Vacuum pressure

10 mbar

Beampipe temperature

Room temperature

Average atomic weight of gas

Hydrogen (H?)
>

Molecular density (for 10 m
pipe)

2.65 x 1010
molecules/cm?

Luminosity (Ring-Ring)

10.05 x 1033 cm2s-1

Bunch intensity (R-R) (e/p)

15.1 /6.0 x 10

Beam Current (R-R) (e/p)

25/1A >

Bunch spacing (Ring-Ring)

8.7 ns 2 1320 bunches

ElectronxProton beam
energy

10 GeV x 275 GeV

Ring-Ring :
DIS-event rate: 600 kHz
Beam-gas event rate: 9818 kHz in 10m

Need to analyze the effect of the
following assumptions:

What is the realistic beam pipe
temperature and how does it change
around the IR?

What is the gas density profile

and detector acceptance for BG-
events?

How does the different SR load
influence the vacuum

Electrons for the LHC, Orsay 2018 -

E.C. Aschenauer



Neuiron puzzle (1) suppression?
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} * Protons are more than neutron
* Neutron yield is 20-30% fewer than — Again no consistent
naive predictionof p: n = 1:2 with isovector exch.
expected from isovector exchange

Where did neutron disappear?

« Absorbtion? Rescattering? 16



Neutron puzzle (2): pp vs ep

Limited fragmentation = the same spectra

LHCf data similar but models suggest harder spectrum at xz ~ 1

due to projectile fragmentation? pp - N* +Y, N* - n + (hadrons)

Corresponding to proton dissociation for ep DIS: y*p - XN*

LRG-tagged neutron?
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Proton: acceptance and resolution

Good acceptance for HL-LHC -

Beam 1 x>0 acceptance at OBSR_61 at s = 324.0m 15 o(s)+0.5 = 1.864mm det 4cm?

wr 1 E 1 0.1
- 324m station acceptance Io.g _ —— p*-Beam 1
- (). Chwastowski) s £ 00 — * Beam 2
107" = o mmmm o _Beam
: o7 Ialpole
- —0.1
L 0.6
1072 0.5 N \
—10.4
0.3 —0. J_Ii T T T T T

1078
0.2 —150 —50 0 50 100 150

Distance from IP s [m]

Acceptance [%]

01 FPS?
Calculated Mass Acceptances 15 o case | | | |
50
- any-any Better acceptance — .
wf- 20 for stations at 220/420 m? o [, E
- 233 (gap between magnets L,
s J. Chwastowski also for LHeCQ) N
e For HL-LHC optics : . .
Time to calculate L I L
o with new LHeC optics!!!
o ' ' ‘ : 0 200 400

N .
600 700
Mass [GeVic] tance from IP [m]

I NI ¥ B TS S R S S BRI
0 100 200 300 400 500



Lero-degree calorimeter (ZDC) requirement

Energy resolution:

— high energy = stochastic term not very important
— dominated by
* Non-compensation (e/h)

» Leak: need big calorimeter

Position resolution:
— 70MeV:7TeV =10"°>=0.01lmrad = 1 mm @ z = 100m for neutrons

— Need very fine segmentation EM section
to track particles from primary interaction

Dynamic range

19



IDC requirement (2) aperture and space

0.3 -
0.2 /_\ ‘
0.1 0.3
E 0.0 0.2 ~
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~
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Aperture: also enough

* 0.35mrad or 2.4 GeV p;y @ 7 TeV beam

Big calorimeter like : :
9 assuming LHC magnet the aperture is +£35 mm

60 X 60 X 200 cm possible

for good energy resolution! * Horizontal aperture would be larger

20



Running scenario

Nominal run for L = 103* cm™2s~1:
f*=5cm,o(pr) =8 X% 107° rad x 7 TeV = 0.56 GeV
— Too large beam dispersion for soft physics
— In principle one could retract the calorimeter for high lumi runs?

— Or, replace with ZDC with minimum function (with fused silica etc.)

need 8 = Tm run: o(pr) < 100 MeV

— L = 1032 cm™2s™1: should be ~enough for soft / low-x physics?

21



Radiation dose

7 TeV dose / event ~ 3 X 10”7 Joule / event

ep cross section: 68 ub - 680 kHz @ 103* cm™2s™! - 1.8 Joule/s

— LHCf simulation (about 14;):
1/3 of dose in 1kg material (30Gy/nb for pp)

— For ep this corresponds to 0.6 Gy/sec = 6 MGy / year @ 103*
[_0:10‘302,19 }

From beam-gas: much smaller: O(100kHz)

Radiation ~ O(10MGy) for 1-year operation: way below LHC pp

22



Technology on market

3mm (30um sensor size)
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Radiation ~ O(10MGy)

* For EM section:
silicon-based fine-segmentation calorimeter
for position resolution + SW compensation
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— CMS forward calorimeter (Si + Scintillators)
Operation at —30 C* = OK for n,, ~ 101°
. . 2
SI Sensor' ~ 0'5 - 1 cm Fig. 8. Event display in a single ALPIDE chip of a 150 GeV electron

— ALICE FoCal (EM section: MAPS + pads) N. van der Kolk, NIMA (2019),

) https://doi.org/10.1016/j.nima.2019.04.013
Very fine shower image, also for neutron tracking
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* For Hadcal: cheaper options with compensation?

— Good e/h: plastic scintillators + lead
CMS uses for ny, < 3 x 1013 ~ 0(1MGy)

— Or full silicon calorimeter
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