EIC requirement for Calorimeters and dose estimation

RIKEN+Tsukuba+Nagoya+Kobe discussion 30 October 2019 Yuji Yamazaki (Kobe University)

Boundary condition for ZDC in EIC

Big aperture 4mrad = 12cm Beam ~ 100 GeV Size: ±80 cm × 2m Big enough

Dose for *ep*

- for 300 fb⁻¹?

Dose for *eA*

- How much int. lumi?

dipole

Energy or position resolution?

1mm / 33m = 0.03mrad = 3 MeV @ 100 GeV: 0.03%

Hadrons: $50\%/\sqrt{E}$ @ 10 GeV = 17%, @100 GeV = 5% Photons: $4\%/\sqrt{E}$ @ 10 GeV = 1.3%, @100 MeV = 12%

Energy resolution is much more important Position resolution: 1cm is enough

For HadCal:

- 1. compensation by hardware or software
- 2. Small leakage of shower: need big calorimeter

For EMCal: need non-sampling calorimetry We should aim for $4\%/\sqrt{E}$

Aperture enough?

- eRHIC: 4mrad × 100 GeV = 400 MeV
 - $|t| < 0.2 \text{ GeV}^2$: not much
 - OK for break-up neutrons
- JLEIC: 10mrad, 1 GeV

 |t| < 1 GeV²: much better....
- HERA: 0.5mrad = 0.5 GeV
- LHeC: 0.35 mrad = 2.5 GeV

Event rate for dose

- Numbers from Elke's presentation
- Event rate 600 kHz @ 1×10^{34} cm⁻²s⁻¹ luminosity
 - "DIS" cross section: 60 μb
 - Sounds a bit small: LHeC 68 μb
 - The events should be dominated by photoproduction: may be order(s) of magnitude wrong?
- beam-gas rate 10MHz assuming 10^{-9} mbar = 10^{-7} Pa (Elke)
 - Pessimistic assumption?
 - LHeC estimation is based on 10⁻⁸ Pa
 - (HERA was 10^{-6} Pa near IP)
 - Latifa's number in CFNS2019 workshop: 70kHz for 10^{-9} mbar with HERA IP and HERA counter: total rate may be hinger
- Anyhow let's assume Elke's number
 - 10¹⁴ events/year assuming 10 MHz

https://indico.bnl.gov/event/4737/contributions/ 24360/attachments/20396/27266/Latifa-SB.pdf

Radiation dose

100 GeV dose / event ~ 1.6×10^{-8} Joule / event ep event rate 600 kHz @ 10^{34} cm⁻²s⁻¹ \rightarrow 0.01 Joule/s

- LHCf simulation (about $1\lambda_I$):

 $\sigma_{ep}: 10^{-3}\sigma_{pp}$, energy 1/70

- 1/3 of dose in 1kg material (30Gy/nb for pp)
- For EIC *ep* this corresponds to 0.003 Gy/sec \Rightarrow **30kGy / year** @ **10**³⁴

From beam-gas: 14 times larger ⇒ 500kGy / year ?? Hope it would be rather 50kGy / yr

Radiation ~ O(100k – 1MGy) or $n_{eq} \sim 3 \times 10^{12-13}$ for 1-year operation of ep (~ C. Hyde's number)

i.e. 10^{14-15} for lifetime

- *eA* luminosity/current 1/100 of *ep*? Then dose similar
- If the current is only 1/10 the dose would be a few times higher

Plastic scintillators?

- Silicon and LYSO should be OK for the dose
- How about plastic scintillators?
 - Very good resolution for hadrons
- Some plastic like PEN stands for >0.1 MGy radiation
 - http://inspirehep.net/record/1454399
 - Light yield decreases to 46.7% after 0.14 MGy to 50%, but recovers to 79.5% after 9 days
 - maybe too sensitive to accelerator operation condition: difficult to calibrate?
 - OK for cells of calorimeters outside the core of hadronic shower?
 - Need simulation
 - Silicon may have comparable resolution
 - much more expensive, though

BACKUP

Physics with proton tagging for ep

- Exclusive measurements
 - Diffraction, VM production (Anna, Paul ...)
 - QED processes $ep \rightarrow e\gamma p$ etc.
 - Higgs thru WW fusion, reconstruction via elastically scattered proton (??)

Soft vertex: $\xi = 1 - x_F \ll 1$, $p_T \simeq \Lambda_{QCD} \approx O(200 \text{MeV})$

 \Rightarrow 10⁻³ < ξ < 0.05 (or larger), p_T < a few GeV

- Inclusive measurements Spectrum of slower leading protons ($x_F < 1$)
- $\Rightarrow \text{lower } x_F, \text{ larger } p_T$ also interesting

Neutron tagging for ep

- Inclusive measurement @ HERA:
 - supporting one-pion exchange
 - b-slope (~ 8 GeV⁻²)
 compared to various models
 of pion fluxes
- 0.1 < x_F ≤ 1 and
 >1 GeV in p_T needed
 - Effectively wider aperture at the LHeC (7 vs 1 TeV) than HERA $p_T^{max} = p\theta_{max}(1 - x_F)$

π^0 production by LHCf and ATLAS

- Impact to cosmic ray simulation
- π^0 tagging thanks to excellent position resolution of the LHCf calorimeter (200 µm for 100 GeV e^-)
- Diffractive events tagged by LRG in ATLAS

Need EM section with excellent position resolution

Proton/neutron tagged eD/eA DIS

- Proton-tagged *eD* and *eA* scattering
 - $e(p+n) \rightarrow en + p$ DIS for neutron!
 - Way to understand
 nuclear (EMC) effect
 or short-range correlation (SRC)
 by comparing small and large system
- Neutron-tagged (ep + n):
 - Cross-check with *ep* runs

J.Phys.Conf.Ser. 543 (2014) 012007

For bigger nucleus

- Diffraction and Ultra-Peripheral Collisions (UPC) : A may break up (Brian's talk)
 - multiplicity and energy of neutron vs t ?
 - Dissociated particles tagged by FPS? (Paul's talk 2018)
- Geometry (e.g. centrality) determination

need to measure beyond 1 TeV (rather 10 TeV?) ALICE ZDC (A-side) with and without activities in plug area 2.76 TeV run

BACKUP

Beam-gas interactions

- First and foremost, need an excellent vacuum
- Some estimations
- Assumptions of the vacuum and layout from other facilities (HERA, LHC)

Vacuum pressure	10 ⁻⁹ mbar
Beampipe temperature	Room temperature
Average atomic weight of gas	Hydrogen (H ²)
Molecular density (for 10 m pipe)	2.65 x 10 ¹⁰ molecules/cm ²
Luminosity (Ring-Ring)	10.05 x 10 ³³ cm ⁻² s ⁻¹
Bunch intensity (R-R) (e/p)	15.1 / 6.0 x 10 ¹⁰
Beam Current (R-R) (e/p)	2.5 / 1 A
Bunch spacing (Ring-Ring)	8.7 ns \rightarrow 1320 bunches
ElectronxProton beam energy	10 GeV x 275 GeV

Ring-Ring : DIS-event rate: 600 kHz Beam-gas event rate: 9818 kHz in 10m

- Need to analyze the effect of the following assumptions:
- What is the realistic beam pipe temperature and how does it change around the IR?
- What is the gas density profile
- and detector acceptance for BGevents?
- How does the different SR load influence the vacuum

Again no consistent

with isovector exch.

Where did neutron disappear?

- Neutron yield is 20-30% fewer than naïve prediction of p : n = 1:2 expected from isovector exchange
- Absorbtion? Rescattering?

16

Neutron puzzle (2): pp vs ep

- Limited fragmentation \Rightarrow the same spectra
- LHCf data similar but models suggest harder spectrum at $x_F \sim 1$
 - due to projectile fragmentation? $pp \rightarrow N^* + Y$, $N^* \rightarrow n + (hadrons)$
 - Corresponding to proton dissociation for *ep* DIS: $\gamma^* p \rightarrow XN^*$ LRG-tagged neutron?

Proton: acceptance and resolution

Zero-degree calorimeter (ZDC) requirement

- Energy resolution:
 - high energy \Rightarrow stochastic term not very important
 - dominated by
 - Non-compensation (e/h)
 - Leak: need big calorimeter
- Position resolution:
 - 70 MeV : 7 TeV = 10^{-5} = 0.01mrad ⇒ **1 mm** @ z = 100m **for neutrons**
 - Need very fine segmentation EM section to track particles from primary interaction
- Dynamic range

ZDC requirement (2) aperture and space

Big calorimeter like

 $60 \times 60 \times 200$ cm possible for good energy resolution!

Aperture: also enough

- 0.35 mrad or **2.4 GeV** p_T @ 7 TeV beam assuming LHC magnet the aperture is ± 35 mm
- Horizontal aperture would be larger

Running scenario

• Nominal run for $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$:

 $\beta^* = 5 \text{ cm}, \sigma(p_T) = 8 \times 10^{-5} \text{ rad} \times 7 \text{ TeV} = 0.56 \text{ GeV}$

- Too large beam dispersion for soft physics
- In principle one could retract the calorimeter for high lumi runs?
- Or, replace with ZDC with minimum function (with fused silica etc.)
- **need** $\boldsymbol{\beta}^* \gtrsim \mathbf{1m}$ **run:** $\sigma(p_T) \ll 100$ MeV
 - $L = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$: should be ~enough for soft / low-x physics?

Radiation dose

7 TeV dose / event ~ 3×10^{-7} Joule / event

ep cross section: 68 µb \rightarrow 680 kHz @ 10³⁴ cm⁻²s⁻¹ \rightarrow 1.8 Joule/s

- LHCf simulation (about $1\lambda_I$):
 - 1/3 of dose in 1kg material (30Gy/nb for pp)
- For *ep* this corresponds to 0.6 Gy/sec \Rightarrow 6 MGy / year @ 10³⁴

$$\sigma_{ep}$$
: $10^{-3}\sigma_{pp}$

From beam-gas: much smaller: O(100kHz)

Radiation ~ O(10MGy) for 1-year operation: way below LHC *pp*

Technology on market

3mm (30um sensor size)

Radiation ~ O(10MGy)

- For EM section: silicon-based fine-segmentation calorimeter for position resolution + SW compensation
 - **CMS forward calorimeter** (Si + Scintillators) Operation at $-30 \text{ C}^{\circ} \Rightarrow \text{OK for } n_{eq} \sim 10^{16}$ Si sensor: $\sim 0.5 - 1 \text{ cm}^2$

ALICE FoCal (EM section: MAPS + pads)
 Very fine shower image, also for neutron tracking

N. van der Kolk, NIMA (2019), https://doi.org/10.1016/j.nima.2019.04.013

- For Hadcal: cheaper options with compensation?
 - Good e/h: plastic scintillators + lead CMS uses for $n_{eq} < 3 \times 10^{13} \sim 0(1 \text{MGy})$
 - Or full silicon calorimeter