Status of Single Spin Asymmetry

Slide 1

Benard Mulilo [KU/RIKEN]

I. Nakagawa, R. Seidl, Y. Goto, A. Bazilevsky, [THU 7 AM (EST), 2019/11/07]

RadLab Meeting

<u>Synopsis</u>

- \mathfrak{B} According to all discussions we have had so far, we think that the 1D P_T unfolding is satisfactory enough for calculations of A_N versus true P_T .
- **%** To take care of the asymmetry dilution, we simply need to modify our already unfolded 1-Dim P_T spectrum so that it is unfolded in 2 Φ bins. More on this 1-D unfolding approach on the next slides.
- **#** Thus we will not be needing 2-D unfolding approach for now until this modified 1-D P_T unfolding approach has been applied to reconstruct true P_T dependence of A_N . We believe that this approach should work just fine.

Single Spin Asymmetry – Way Forward

 \mathfrak{B} Using this approach, we will calculate the single spin asymmetry by applying this 1-D P_T spectrum unfolded in 2 Φ bins. That is, the left and the right Φ bins as schematically depicted below.

Single Spin Asymmetry – Way Forward

We can calculate asymmetries by simply measuring yields on the left and yields on the right after proper scaling with 1/<sin>. That is:

Single Spin Asymmetry – Way Forward

- In this case, we reconstruct P_T in N bins. And the smearing in P_T is studied in 2*N bins, which can be viewed as N bins for the hits on the left and N bins for the hits on the right.
- Thus, events in any true P_T bin can be smeared to any 2*N bins. So this case, we believe, is supposed to properly care about the asymmetry dilution.
- ^(a) This way, we do not have to worry about the asymmetry dilution in the distribution of the true P_T dependence of A_N .

Single Spin Asymmetry – Next Tasks

Immediate Tasks

\mathfrak{B} Reconstruct P_T spectrum in 2 Φ bins. That is left and right Φ bins.

 \mathfrak{B} Apply previously used SVD unfold method to unfold the P_T spectrum.

Later Tasks

\mathfrak{B} Reconstruct P_T - dependence of A_N distribution.

 \mathfrak{B} Compute errors associated with the P_T - dependence of A_N.