NNA の3体共鳴状態の研究

宮本亮祐^A、肥山詠美子 ^{A,B}

九大院理^A、理研^B

クォーク (質量 [MeV/c ²])					
電荷	第一世代	第二世代	第三世代		
+2/3	u	с	t		
-1/3	d	S	b		

∧ハイパー核

- Λ 粒子 (uds) の入った原子核を Λ ハイパー核と呼ぶ
- 現在見つかっている ∧ ハイパー核は 40 個

 $^3_\Lambda {\rm H}$

- hypertriton
- *n*, *p*, Λ の 3 つのバリオンで構成される
- 束縛エネルギーは -0.13MeV

 $nn\Lambda$

- GSI の実験により nnA の束縛状態があると報 n + n + A
 告された [1]
- 理論計算の結果からは束縛状態が見つからな かった [2,3,4]

[1]C. Rappold *et al.* (HypHI Collaboration), Phys. Rev. C 88, 041001(R) (2013)
[2]H. Garcilazo and A. Valcarce, Phys. Rev. C 89, 057001 (2014)
[3]E. Hiyama, S. Ohnishi, B. F. Gibson, Phys. Rev. C 88, 061302(R) (2014)
[4]A. Gal and H. Garcilazo, Phys. Lett. B 736, 93 (2014)

nn∆ の束縛状態(先行研究)

ポテンシャルを調節して、*nn*Λ が束縛する状態を実現すると同時に、そのポテンシャルで他の系の束縛エネルギーを正しく計算できるか確認する

- $n\Lambda$ 間相互作用: ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He
- nn 間相互作用:³H

E. Hiyama, S. Ohnishi, B. F. Gibson, Phys. Rev. C 88, 061302(R) (2014)

nnA の束縛状態(先行研究)

nnA の束縛状態(先行研究)

 $E_{\rm exp}(^{3}{\rm H}) = -8.48{\rm MeV}$

x	$a_{nn}(\mathrm{fm})$	$r_{\rm eff}({\rm fm})$	ϵ_{nn} (MeV)	$E_{^{3}\mathrm{H}}(\mathrm{MeV})$	$E_{\frac{3}{\Lambda}n}$ (MeV)
1.0	-23.7	2.78	Unbound	-7.77	Unbound
1.13	25.1	2.40	-0.066	-9.75	Unbound
1.35	6.88	1.96	-1.269	-13.93	-1.272

$$V_{nn}({}^1S_0) \times x$$

 $n + n + \Lambda$ 0MeV

$$\frac{nn + \Lambda}{\frac{3}{\Lambda n}} \frac{-1.269 \text{MeV}}{-1.272 \text{MeV}} J^{\pi} = 1/2^{+1}$$

⊠ 3: *x* = 1.35

nn∆ の共鳴状態(先行研究)

I. R. Afnan, B. F. Gibson, Phys. Rev. C 92, 054608 (2015)

→ 共鳴状態の可能性

LS 力およびテンソル力は考慮されていない

研究の目的・手法

- より現実的なポテンシャルを用いて nnA の共鳴状態について研究することを目的とした
- 今回は all S wave で計算した結果を発表する
 - ▶ LS カやテンソルカは考慮しない
- 先行研究にならうと今回の条件では共鳴状態は見られないと予想
- ポテンシャルにファクターをかけて束縛状態を確認したのちに、 ファクターを小さくして共鳴状態を調べた
- ガウス展開法により固有値を求め、複素座標回転法を用いて共鳴状態を調べた

nnA3 体系のヤコビ座標

波動関数

$$\Psi_{JM}(\boldsymbol{r}) = \sum_{C=1}^{3} \sum_{n,N} \mathcal{A} [\eta_{\frac{1}{2}}(n_1)\eta_{\frac{1}{2}}(n_2)]_1[[[\chi_{\frac{1}{2}}(n_1)\chi_{\frac{1}{2}}(n_2)]_0\chi_{\frac{1}{2}}(\Lambda)]_{\frac{1}{2}} \\ \times [\phi_{n,l=0}^{(c)}(\boldsymbol{r}_c)\psi_{N,L=0}^{(c)}(\boldsymbol{R}_c)]_0]_{J=\frac{1}{2}}$$

$$\phi_{nl}^{(c)}(\mathbf{r}_c) = r_c^l e^{-\nu_n r_c^2} Y_{lm}(\hat{\mathbf{r}}_c)$$
$$\nu_n = \frac{1}{r_n^2}, \ r_n = r_1 a^{n-1} (n = 1, \cdots, n_{\max})$$

複素エネルギー固有値は $E=E_r-i\Gamma/2$ と表され、 E_r が共鳴エネル ギー、 Γ が崩壊幅となる。

θを変えたとき、その角度に依存せずに現れる点○が共鳴状態である。

用いたポテンシャル

V_{nn} : AV8 $n+p+\Lambda$ 0MeV $V_{n\Lambda}$: ${}^{3}_{\Lambda}$ H の束縛エネルギーを再現 $d+\Lambda$ -2.22MeV するポテンシャル ${}^{3}_{\Lambda}$ H -2.35MeV

それぞれのポテンシャルにファクター倍する

 $\rightarrow V_{nn} \times \alpha_{nn}, \ V_{n\Lambda} \times \alpha_{n\Lambda}$

V_{nn}	\times	α_{nn}
----------	----------	---------------

 $V_{n\Lambda} \times \alpha_{n\Lambda}$

α_{nn}	$E_{nn}(MeV)$	$E_{nn\Lambda}({\sf MeV})$	$\alpha_{n\Lambda}$	$E_{n\Lambda}(MeV)$	$E_{nn\Lambda}({\sf MeV})$
1.0	Unbound	Unbound	1.0	Unbound	Unbound
1.13	-0.048	Unbound	1.25	0.000	Unbound
1.80	-7.613	-7.624	1.38	0.000	-0.065

表 1: *E_{nn}* と *E_{nn}* の比較

<u>表</u> 2: *E_{nΛ}* と *E_{nnΛ}* の比較

共鳴状態

図 5: α_{nn}=1.75 での固有値分布

図 6: *α_n*∧=1.35 での固有値分布

まとめと考察

- *nn*A3 体系における共鳴状態を調べた
- ポテンシャルにファクター倍するも、先行研究とは異なり共鳴状態
 を確認することはできなかった
- 今回は s wave しか考慮していないことも原因の一つと考えられる
 - ▶ ポテンシャル障壁がないために共鳴状態が現れなかった可能性
 - ▶ p wave 以降を入れることで遠心力によるポテンシャル障壁が立つ

- *l* ≥ 0 で計算を行い、遠心力の効果で共鳴状態が現れるのかを確認 する
- LS 力、テンソル力なども考慮し、より現実的なポテンシャルでの計算を行う