Infrared renormalon in the $\mathbb{C} P^{N-1}$ model on $\mathbb{R} \times S^{1}$

森川億人

九大素粒子理論研究室
2019／12／23 理研－九大ジョイントワークショップ＠九州大学
－K．Ishikawa，O．M．，A．Nakayama，K．Shibata，H．Suzuki and H．Takaura，arXiv：1908．00373［hep－th］．
－K．Ishikawa，O．M．，K．Shibata，H．Suzuki and H．Takaura， arXiv：1909．09579［hep－th］，to appear in PTEP．

Factorial growth of perturbation series

－Perturbation theory（PT）of QM／QFT is a quite successful tool．
－But，perturbative series are typically divergent as

$$
F(\lambda)=\sum_{n=0}^{\infty} c_{n} \lambda^{n}, \quad c_{n} \sim n!\text { at large } n .
$$

－Accuracy of perturbative predictions is limited．．．

Factorial growth of perturbation series

－E．g．，ground state energy in QM（Rayleigh－Schrödinger PT）：

Perturbative coefficients

> Zeeman effect
> Stark effect

Anharmonic oscillator

$$
\begin{aligned}
& V(\phi) \sim \phi^{3} \\
& V(\phi) \sim \phi^{4}
\end{aligned}
$$

Double well
periodic cosine well

$$
\begin{array}{r}
\sim \Gamma(n+1 / 2) \\
\sim(-1)^{n} \Gamma(n+1 / 2) \\
\sim n! \\
\sim n!
\end{array}
$$

－These are due to the factorial growth of the number of Feynman diagrams．

Borel resummation

－The Borel（re）summation is useful for summing divergent asymptotic series．
－For the perturbative series of a quantity $f(\lambda)$ ，

$$
f(\lambda) \sim \sum_{n=0}^{\infty} f_{n}\left(\frac{\lambda}{4 \pi}\right)^{n+1}
$$

we define the Borel transform by

$$
B(u) \equiv \sum_{n=0}^{\infty} \frac{f_{n}}{n!} u^{n}
$$

－The Borel sum is given by

$$
f(\lambda) \equiv \int_{0}^{\infty} d u B(u) e^{-4 \pi u / \lambda}
$$

Borel resummation

－If $f_{n} \sim b^{-n} n$ ！as $n \rightarrow \infty$ ，

$$
B(u)=\frac{1}{1-u / b}
$$

This possesses a pole singularity at $u=b$ ．
－The integral is convergent for $b<0$（alternating series）．
－If $b>0$ ，the Borel sum becomes ill－defined．\Rightarrow non－Borel summable
－Then，one should avoid the pole by contour deformation．
－This induces the imaginary ambiguity proportional to $\sim e^{-4 \pi b / \lambda}$ ．

Resurgence theory and semi－classical picture

－$f(\lambda)$ is not analytic at $\lambda=0$ ，but an asymptotic series．
－Asymptotic nature of perturbative series is related to
（1）possible instability of quantum theories，

> [Dyson '52, Hurst '52, Thirring '53, ...]
（2）nonperturbative effects such as quantum tunneling．
[Vainshtein '64, Bender-Wu '73, Lipatov '77, ...]
－Ambiguity \propto a nonperturbative factor $e^{- \text {const．／} / \lambda}$

$$
\uparrow \text { Cancellation (Resurgence structure) }
$$

Ambiguity associated with nonperturbative effects
－Instanton calculus［Bogomolny 1980，Zinn－Justin 1981］

$$
V(x)=\frac{1}{4}\left(x^{2}-1\right)^{2} \quad \rightarrow \quad \text { Solution to EoM: } x(\tau)=\tanh \frac{\tau-\tau_{0}}{\sqrt{2}}
$$

－Reading out nonperturbative effects from PT：Resurgence theory

Renormalon and bion

－Another source of n－factorial：renormalon［＇t Hooft 1979］
－Amplitude of a single Feynman diagram $\sim \beta_{0}^{n} n$ ！．
（ β_{0} ：one－loop coefficient of the beta function）

－It is conjectured that renormalon ambiguities disappear thanks to the so－called bion［Argyres－Ünsal＇12，Dunne－Ünsal＇12，．．．］．
－Bion：a pair of fractional instanton／anti－instanton
on $\mathbb{R}^{d-1} \times S^{1}$ with twisted boundary conditions（BC）
－It is important to clarify the renormalon structure on $\mathbb{R}^{d-1} \times S^{1}$ ．
－We study the 2D $\mathbb{C} P^{N-1}$ model in the large N limit．

2D（supersymmetric） $\mathbb{C} P^{N-1}$ model

－Complex projective space $\mathbb{C} P^{N-1} \cong S^{2 N-1} / U(1)$ ：for $z^{A} \in \mathbb{C}$ ，

$$
\begin{aligned}
& \left(z^{1}, z^{2}, \ldots, z^{N}\right) \sim\left(c z^{1}, c z^{2}, \ldots, c z^{N}\right) \quad(c \in \mathbb{C}, c \neq 0) \\
\rightarrow & \bar{z}^{A} z^{A}=1(|c|=1) \text { and } U(1) \text { gauge invariance }(\arg (c)) .
\end{aligned}
$$

－Action of the 2D（supersymmetric） $\mathbb{C} P^{N-1}$ model：

$$
S=\frac{N}{\lambda} \int d^{2} x\left[-\bar{z}^{A} D_{\mu} D_{\mu} z^{A}+\bar{\sigma} \sigma+\bar{\chi}^{A}\left(\not D+\bar{\sigma} P_{+}+\sigma P_{-}\right) \chi^{A}\right]
$$

where $D_{\mu}=\partial_{\mu}+i A_{\mu}, \gamma_{5}=-i \gamma_{x} \gamma_{y}, P_{ \pm}=\left(1 \pm \gamma_{5}\right) / 2$ ，and we impose $\bar{z}^{A} z^{A}=1$ and $\bar{z}^{A} \chi^{A}=0$ ．
－$U(1)$ gauge symmetry：$z^{A} \rightarrow g z^{A}, \chi^{A} \rightarrow g \chi^{A}$ ， and $A_{\mu} \rightarrow A_{\mu}+i g^{-1} \partial_{\mu} g$ with $g \in U(1)$ ．
－Lagrange multiplier fields f and $(\eta, \bar{\eta})$ ；

$$
S^{\prime}=S+\frac{N}{\lambda} \int d^{2} x\left[f\left(\bar{z}^{A} z^{A}-1\right)+2 \bar{\eta} \bar{z}^{A} \chi^{A}+2 \bar{\chi}^{A} z^{A} \eta\right] .
$$

\mathbb{Z}_{N} invariant twisted BC

－We assume the following $B C$

$$
\begin{aligned}
& z^{A}(x, y+2 \pi R)=e^{2 \pi i m_{A} R} z^{A}(x, y), \\
& \chi^{A}(x, y+2 \pi R)=e^{2 \pi i m_{A} R} \chi^{A}(x, y),
\end{aligned}
$$

where

$$
m_{A}= \begin{cases}A / N R & \text { for } A=1,2, \ldots, N-1 \\ 0 & \text { for } A=N\end{cases}
$$

－We impose periodic BC for all auxiliary fields A_{μ}, f, σ, η ．
－Kaluza－Klein momentum along S^{1} is given by $p_{y}=n / R$ ．

Gauge field propagator in $N \rightarrow \infty$

－We consider $N R \Lambda \rightarrow \infty$ where Λ is a dynamical scale．
－Effective action $S_{\text {eff }}$ for fluctuations of the auxiliary fields

$$
A_{\mu} \equiv A_{\mu 0}+\delta A_{\mu}, \quad f \equiv f_{0}+\delta f, \quad \sigma \equiv \sigma_{0}+\delta \sigma
$$

around the large N saddle point $f_{0}=\bar{\sigma}_{0} \sigma_{0}=\Lambda^{2}, \eta_{0}=0$ ．
－$\left.\left.S_{\text {eff }}\right|_{\mathbb{R} \times S^{1}} \xrightarrow{N \rightarrow \infty} S_{\text {eff }}\right|_{\mathbb{R}^{2}}$ in［D＇Adda－Di Vecchia－Lüscher＇78\＆＇79］．
－E．g．，A_{μ} propagator in the SUSY $\mathbb{C} P^{N-1}$ model is given by

$$
\left\langle\delta A_{\mu}(p) \delta A_{\nu}(q)\right\rangle=\frac{4 \pi}{N} \frac{\delta_{\mu \nu}+4 \Lambda^{2} p_{\mu} p_{\nu} /\left(p^{2}\right)^{2}}{\left(p^{2}+4 \Lambda^{2}\right) \mathcal{L}_{\infty}(p)} 2 \pi \delta\left(p_{x}+q_{x}\right) 2 \pi R \delta_{p_{y}+q_{y}, 0}
$$

where

$$
\mathcal{L}_{\infty}(p) \equiv \frac{2}{\sqrt{p^{2}\left(p^{2}+4 \Lambda^{2}\right)}} \ln \left(\frac{\sqrt{p^{2}+4 \Lambda^{2}}+\sqrt{p^{2}}}{\sqrt{p^{2}+4 \Lambda^{2}}-\sqrt{p^{2}}}\right) .
$$

IR renormalon in gluon condensate

－We compute the gluon（photon）condensate in $N \rightarrow \infty$ ，and study Borel singularities associated with it．
－Gluon condensate in the large N limit

$$
\begin{aligned}
& \left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle \\
& =\frac{4 \pi}{N} \int \frac{d p_{x}}{2 \pi} \frac{1}{2 \pi R} \sum_{p_{y}} \frac{2 p^{2}}{\left(p^{2}+4 \Lambda^{2}\right) \mathcal{L}_{\infty}(p)}
\end{aligned}
$$

－Positive powers of $\Lambda^{2}=\mu^{2} e^{-4 \pi / \lambda_{R}\left(\mu^{2}\right)}$ are regarded as the non－perturbative part；$\langle F F\rangle$ in PT is given by

$$
\left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle_{\mathrm{PT}}=\left.\frac{4 \pi}{N} \int \frac{d p_{x}}{2 \pi} \frac{1}{2 \pi R} \sum_{p_{y}} \frac{p^{2}}{\ln \left(p^{2} / \Lambda^{2}\right)}\right|_{\text {expansion in } \lambda_{R}\left(\mu^{2}\right)}
$$

Note that $\mathcal{L}_{\infty}(p)=\frac{2}{p^{2}} \ln \left(p^{2} / \Lambda^{2}\right)+\mathcal{O}\left(\Lambda^{2}\right)$.

Renormalon ambiguity in \mathbb{R}^{d}

－Noting $\lambda_{R}\left(p^{2}\right)=4 \pi / \ln \left(p^{2} / \Lambda^{2}\right),\langle F F\rangle_{\mathrm{PT}}$ is a typical form from which a renormalon appears．Generally，on \mathbb{R}^{d} ，we have
$\int \frac{d^{d} p}{(2 \pi)^{d}}\left(p^{2}\right)^{\alpha} \frac{\lambda_{R}\left(p^{2}\right)}{(4 \pi)^{d / 2}}=\int \frac{d^{d} p}{(2 \pi)^{d}}\left(p^{2}\right)^{\alpha} \sum_{n=0}^{\infty} \ln ^{n}\left(\frac{\mu^{2}}{p^{2}}\right)\left[\frac{\lambda_{R}\left(\mu^{2}\right)}{(4 \pi)^{d / 2}}\right]^{n+1}$
Note that $\ln \left(p^{2} / \Lambda^{2}\right)=\ln \left(p^{2} / \mu^{2}\right)+4 \pi / \lambda_{R}\left(\mu^{2}\right)$ ．
－Focusing on the IR region by introducing a cutoff $q\left(p^{2} \leq q^{2}\right)$ ，

$$
B(u)=\int_{p^{2} \leq q^{2}} \frac{d^{d} p}{(2 \pi)^{d}}\left(p^{2}\right)^{\alpha}\left(\frac{\mu^{2}}{p^{2}}\right)^{u}=\frac{\mu^{2 u}}{(4 \pi)^{d / 2} \Gamma(d / 2)} \frac{q^{2 \alpha+d-2 u}}{\alpha+d / 2-u} .
$$

－The Borel singularity at $u=\alpha+d / 2=2$ gives rise to

$$
\left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle_{\text {renormalon on } \mathbb{R}^{2}(\text { at } u=2)}= \pm \pi i \Lambda^{4} / N
$$

Renormalon ambiguity in $\mathbb{R}^{d-1} \times S^{1}$

－On the other hand，on $\mathbb{R}^{d-1} \times S^{1}$ ，

$$
\int \frac{d^{d} p}{(2 \pi)^{d}} \rightarrow \int \frac{d^{d-1} p}{(2 \pi)^{d-1}} \frac{1}{2 \pi R} \sum_{p_{d}=n / R, n \in \mathbb{Z}}
$$

－Now，only the $p_{d}=0$ term can be singular；the dimension of the momentum integration is effectively reduced：

$$
u=\alpha+\frac{d}{2} \rightarrow \alpha+\frac{d-1}{2}
$$

－The Borel singularity at $u=3 / 2$ gives rise to the renormalon：

$$
\left\langle F_{\mu \nu}(x) F_{\mu \nu}(x)\right\rangle_{\text {renormalon }}= \pm \pi i \frac{\Lambda^{3}}{\pi R N}
$$

Peculiar to the compactified space $\mathbb{R} \times S^{1}$ ！

Discussion and conclusion

－The Borel singularity is generally shifted by $-1 / 2$ under the S^{1} compactification and the following assumptions：
（1）volume independence of a loop integrand of a renormalon diagram
（2）loop momentum variable along S^{1} associated with the periodic BC（not twisted！）
－Then，in the large－N（SUSY） $\mathbb{C} P^{N-1}$ model，we find an unfamiliar renormalon singularity at $u=3 / 2$ ．
－But bion calculus $\rightarrow u=2$［Fujimori et al．］．
Thus，no obvious semi－classical interpretation so far．
－4D $S U(N)$ QCD（adj．）on $\mathbb{R}^{3} \times S^{1} \Rightarrow$ Takaura－san＇s talk

