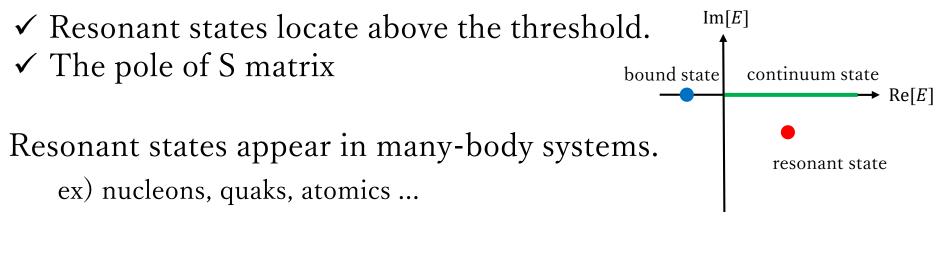
⁶He+p反応を通した 共鳴状態の解析

<u>小川翔也</u>松本琢磨 九州大学

2019/12/23

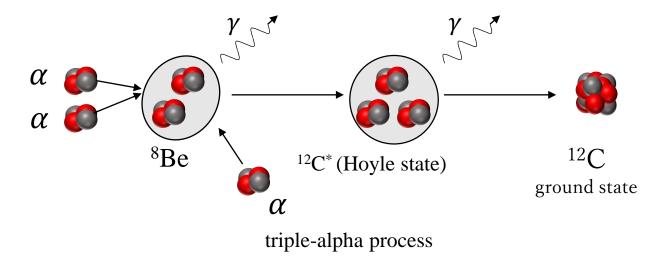
"理研-九大ジョイントワークショップ「数理が紡ぐ素粒子・原子核・宇宙」"@九大

Resonant state



Relationship with nucleosynthesis

ex) The resonant states of ¹²C, 0^+_2 (Hoyle state)



Nuclear physics

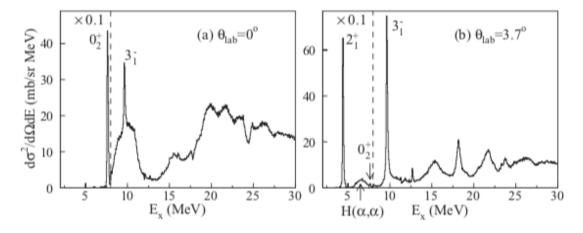
ex) Resonant states of ¹²C

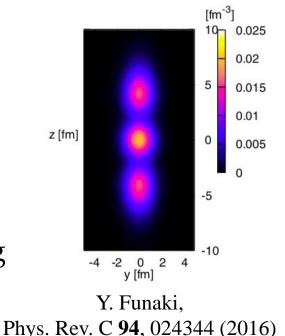
Reaction

- (p, p') or (α, α') reactions
- Energy spectrum

 α -¹²C散乱 @ $E_{\alpha} = 386 \text{ MeV}$

M. Itoh et al., Phys. Rev. C 84, 054308 (2011).



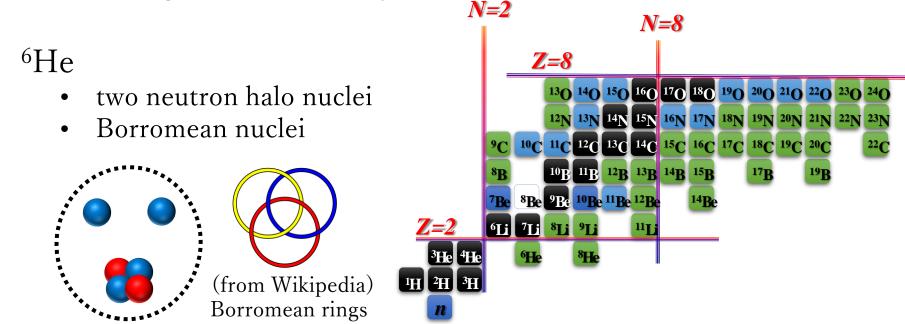


Structure

• The 0_4^+ is considered as a nucleus having the linear-chain configuration of 3α .

Unstable nuclei

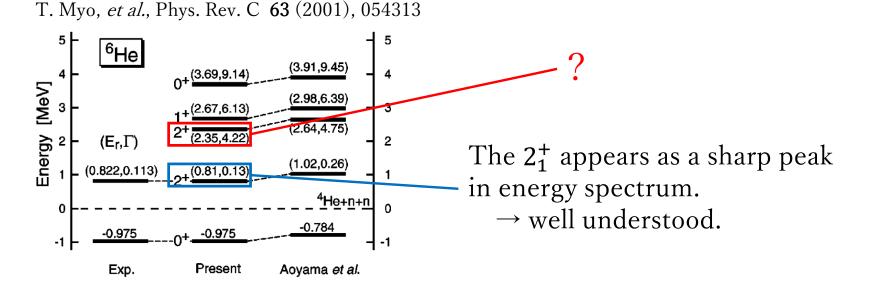
Recently, resonant states of nuclei near neutron dripline have been investigated intensively.



The resonant states of ⁶He is analyzed via (*p*, *p'*) reactions with inverse kinematics. A. Lagoyannis *et al.*, Phys. Lett. B **518** (2001), 27. B. S. V. Stepantsov, *et al.*, Phys. Lett. B **542** (2002), 35.

Previous study on ⁶He

- ✓ The experimental data of (p, p') are analyzed by a calculation without coupling effects of between various states.
- ✓ The 2^+_2 state have been discussed by structural calculation.
 - This states is considered as the next lower state to the 2_1^+ .

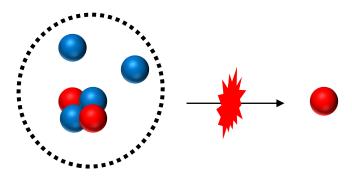


It is not clear that how the 2^+_2 effects on cross sections.

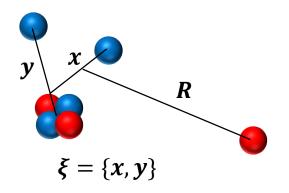
Purpose and Strategy

We analyze the effects from 2^+_2 on the observables via ${}^6\text{He}(p, p')$ reactions.

- Resonant state
 - ✓ ⁶He is described as $\alpha + n + n$ system.
 - ✓ Complex Scaling Method (CSM)
- Analysis of ⁶He(p, p') reactions
 ✓ The ⁶He+p reaction is the α+n+n+p four-body reaction.
 ✓ Continuum-Discretized Coupled Channels method



Continuum-Discretized Coupled Channels method (CDCC)



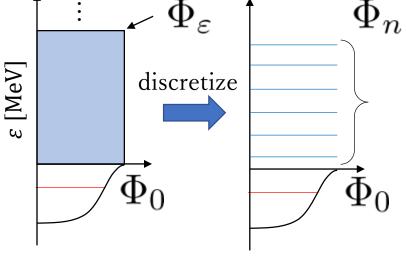
bound

 $\Psi(\boldsymbol{\xi}, \boldsymbol{R}) pprox \Phi_0(\boldsymbol{\xi}) \psi_0(\boldsymbol{R}) +$

Schrödinger equation
$$\left[K_R + \sum_i v_i + V_C + h_{\rm ^6He} - E\right] \Psi(\boldsymbol{\xi}, \boldsymbol{R}) = 0$$

Continuum states of ⁶He Φ_{ε} are discretized.

$$\Psi(oldsymbol{\xi},oldsymbol{R})=\Phi_0(oldsymbol{\xi})\psi_0(oldsymbol{R})+\int d\epsilon\Phi_\epsilon(oldsymbol{\xi})\psi_\epsilon(oldsymbol{R})$$



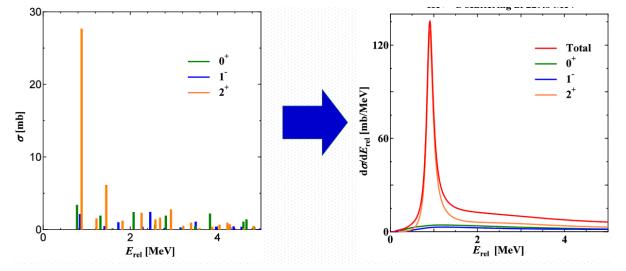
In the CDCC, we solve the coupled-channels equation considering the couplings between the discretized states.

 $\Phi_n(\boldsymbol{\xi})\psi_n(\boldsymbol{R})$

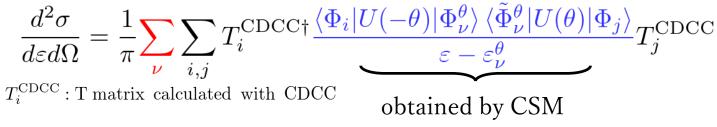
discretized-continuum

Smoothing factor

Obtained cross sections are discretized in eigen energies.



• CDCC + CSM T. Matsumoto, *et al.*, Phys. Rev. C 82 (2010), 051602(R)



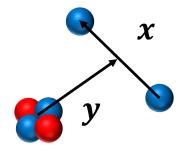
We can separate the part of resonant states from $d^2\sigma/d\varepsilon d\Omega$.

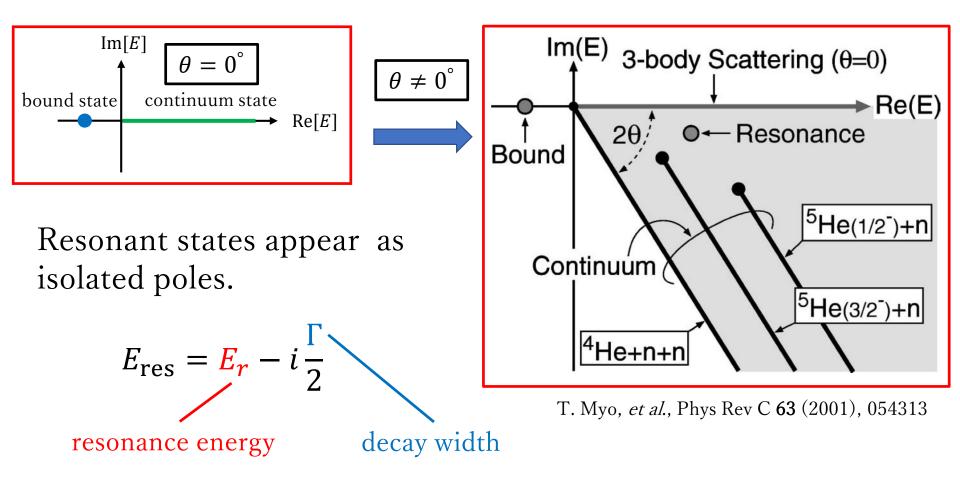
We can evaluate the contribution from resonant states to the cross section.

Complex Scaling Method (CSM)

We consider the transformation as followings.

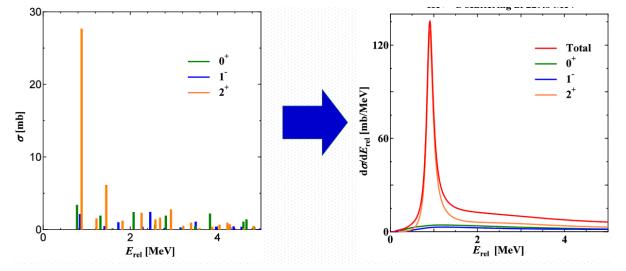
 $U(\theta)\mathbf{x}U^{-1}(\theta) = \mathbf{x}e^{i\theta}, \quad U(\theta)\mathbf{y}U^{-1}(\theta) = \mathbf{y}e^{i\theta}$



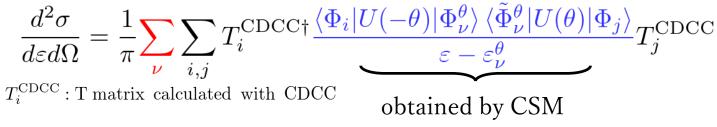


Smoothing factor

Obtained cross sections are discretized in eigen energies.



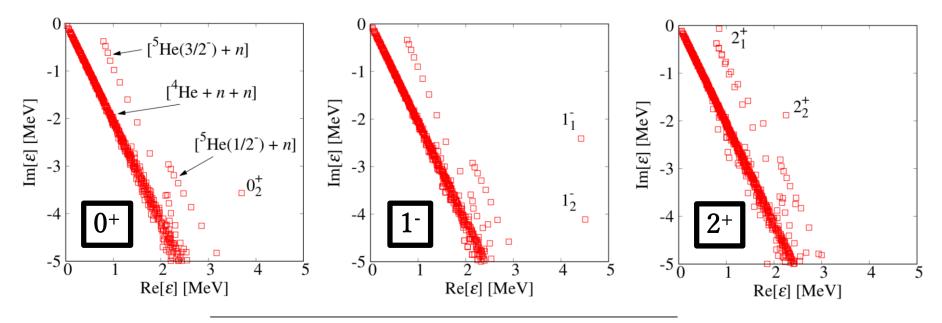
• CDCC + CSM T. Matsumoto, *et al.*, Phys. Rev. C 82 (2010), 051602(R)



We can separate the part of resonant states from $d^2\sigma/d\varepsilon d\Omega$.

We can evaluate the contribution from resonant states to the cross section.

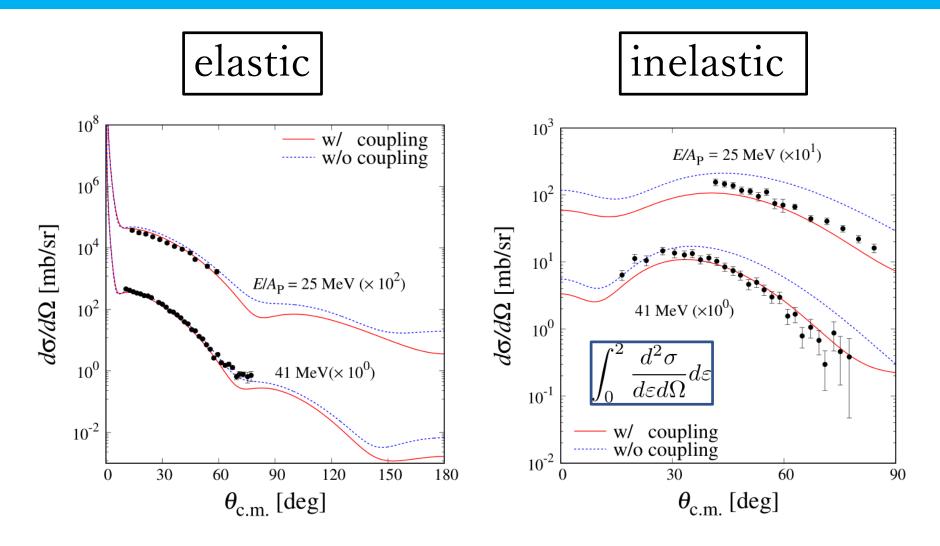
Results of CSM



	Calc.		T. Myo, $et al.$ [1]	
J^{π}	E_r	Г	E_r	Γ
2_{1}^{+}	0.85	0.14	0.81	0.13
2^{+}_{2}	2.25	3.75	2.35	4.22
0_{2}^{+}	3.70	7.13	3.69	9.14
1_{1}^{-}	4.42	4.82		
4 —		0.00		

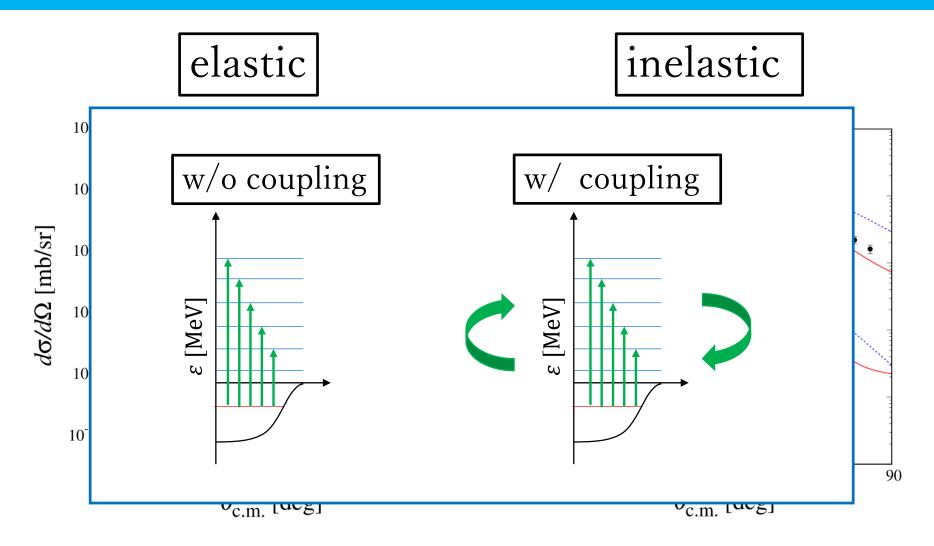
1⁻₂ 4.51 8.23 [1] T. Myo, *et al.*, Phys. Rev. C **63** (2001), 054313

Elastic and Inelastic cross sections



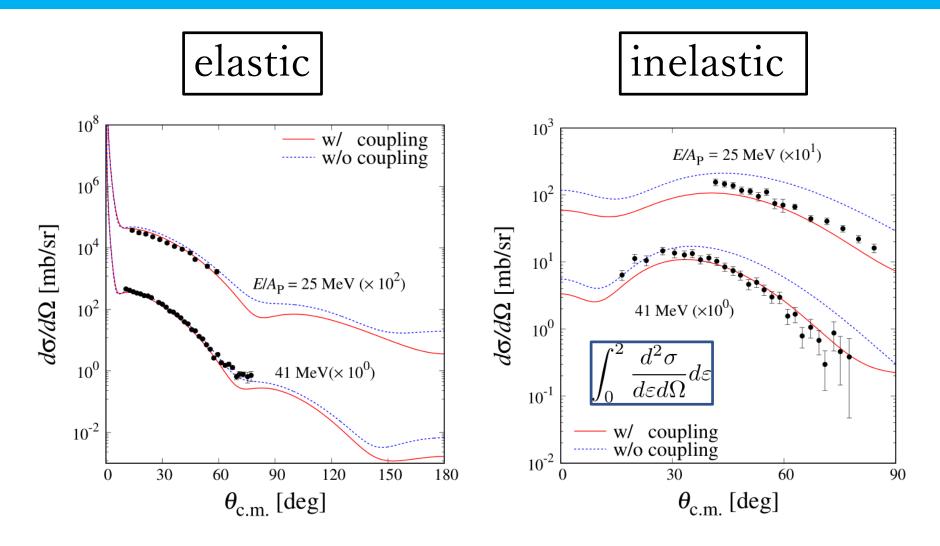
✓ The results of CDCC reproduce well the experimental data.✓ Coupling effects are important.

Elastic and Inelastic cross sections



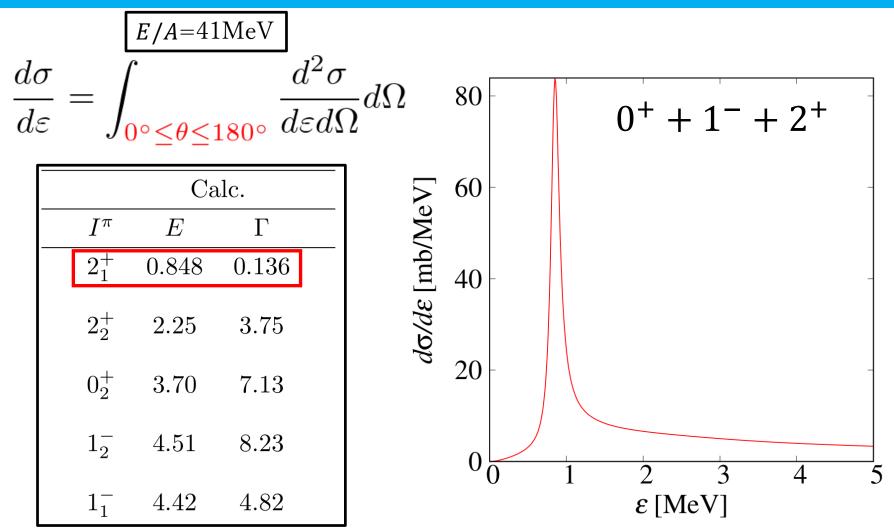
✓ The results of CDCC reproduce well the experimental data.
✓ Coupling effects are important.

Elastic and Inelastic cross sections



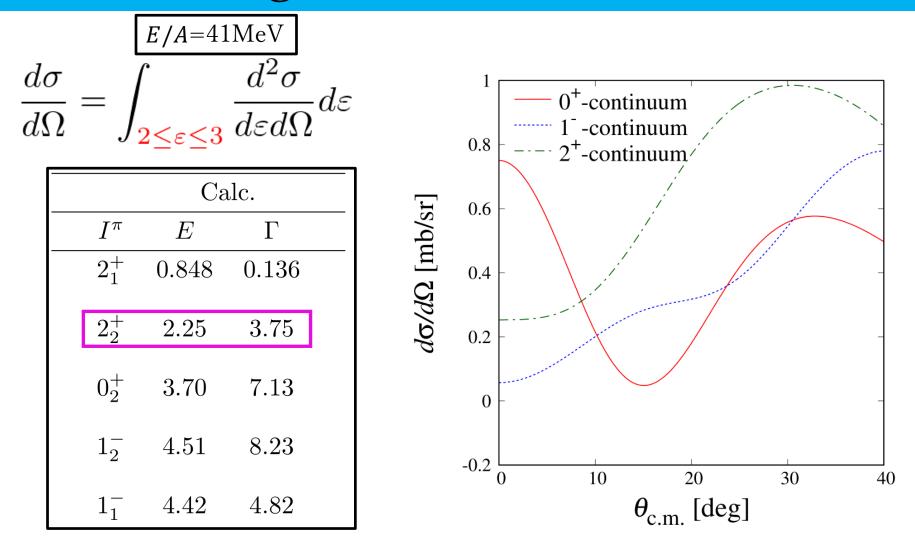
✓ The results of CDCC reproduce well the experimental data.✓ Coupling effects are important.

Energy spectrum



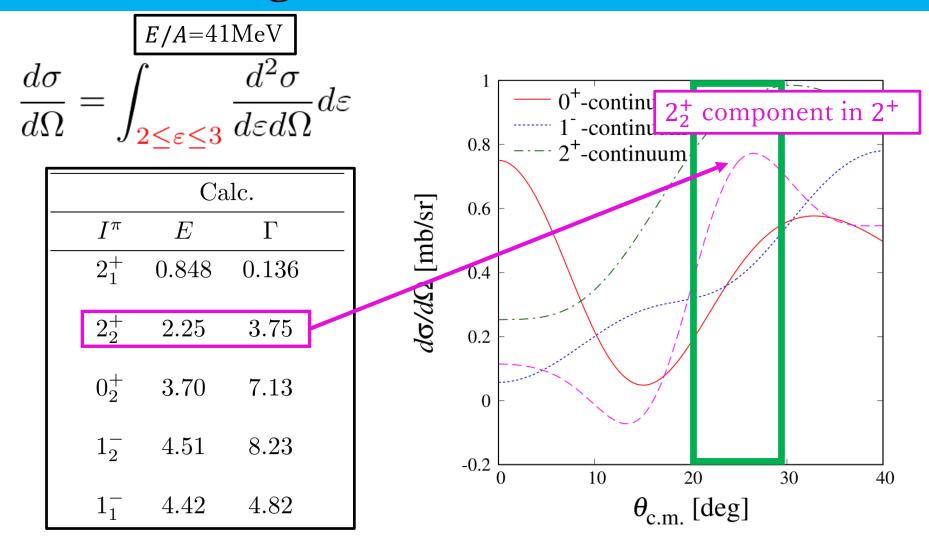
- The 2_1^+ appear as the sharp peak.
- A clear peak from 2⁺₂ can not be seen.

Angular distribution



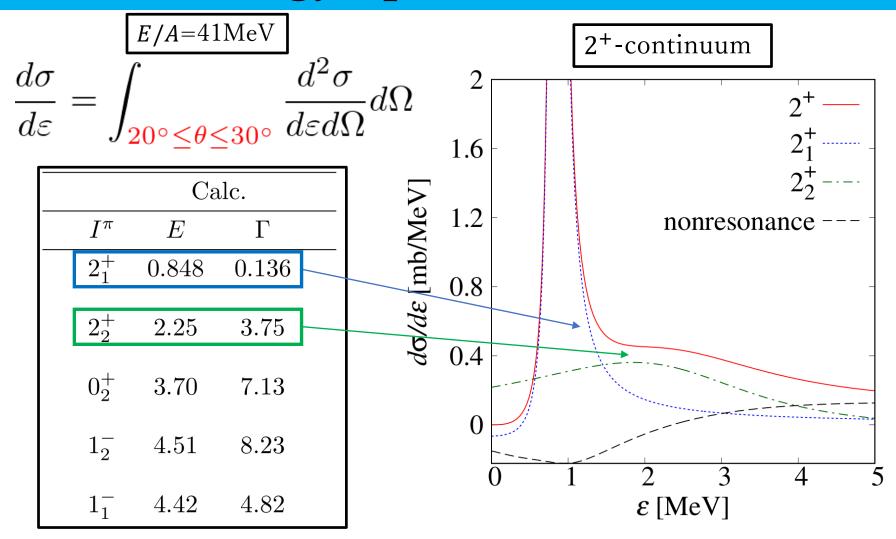
• 2^+ -continuum : relatively large in $20^{\circ} \sim 30^{\circ}$

Angular distribution



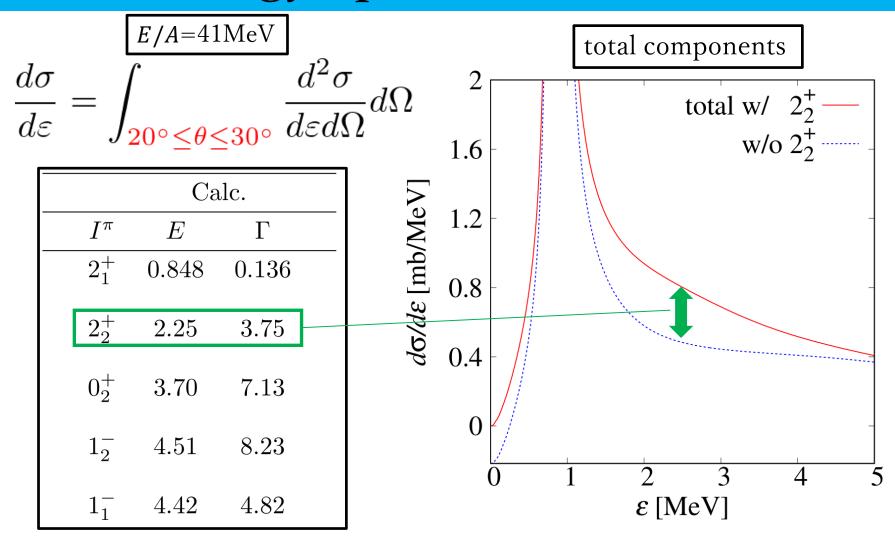
• The effect of 2^+_2 is enhanced in $20^\circ \sim 30^\circ$.

Energy spectrum (2^+)



• The shoulder peak comes from 2^+_2 in $2 \sim 3$ MeV.

Energy spectrum (total)



• The difference between w/ and w/o 2^+_2 appears in 2~3 MeV.

Summary

We analyze the effects from 2^+_2 on the observables via ${}^{6}\text{He}(p, p')$ reactions with CDCC and CSM.

CSM

• The result of 2⁺₂ is similar to one of previous study which calculated by CSM.

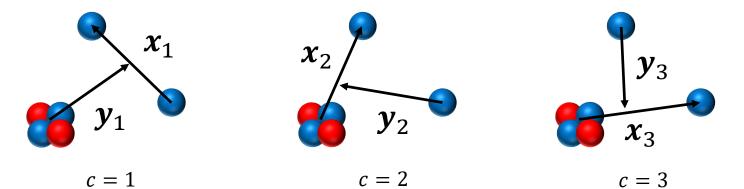
 $^{6}\text{He}(p, p')$ reactions

- The coupling effects are important.
- In 2^+ component, 2^+_2 appears as like a shoulder peak.

backup

Gaussian Expansion Method

Wavefunctions of ⁶He are spanned with Gaussian basis functions.



$$\Phi_{Im}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{c=1}^{3} \sum_{i,j,l,\lambda} \phi_{i,l}(x_c) \varphi_{j,\lambda}(y_c) \left[[Y_l(\hat{\boldsymbol{x}}_c) \otimes Y_\lambda(\hat{\boldsymbol{y}}_c)]_\Lambda \otimes \left[\eta_{1/2} \otimes \eta_{1/2} \right]_S \right]_{Im}$$

$$\phi_{i,l}(x_c) = x_c^l e^{-(x_c/x_i)^2} \qquad \varphi_{j,\lambda}(y_c) = y_c^\lambda e^{-(y_c/y_j)^2}$$

$$x_i = x_1 \left(\frac{x_{\max}}{x_1} \right)^{\frac{i-1}{\max-1}} \qquad y_i = y_1 \left(\frac{y_{\max}}{r_1} \right)^{\frac{j-1}{j_{\max}-1}}$$

✓ *n*-*n* interaction : Minnesota D. R. Thompson, *et al.*, Nucl. Phys. A 286 (1977), 53. ✓ *n*- α interaction : KKNN H. Kanada, et al., Prog. Theor. Phys. 61 (1979), 1327.

CDCC equation

CDCC wavefunction

$$\Psi_{JM}^{\text{CDCC}}(\boldsymbol{\xi}, \boldsymbol{R}) = \sum_{I,n} \sum_{L=|J-I|}^{J+I} \frac{\chi_{nIL}(K_n, R)}{R} \mathcal{Y}_{JM}^{nIL}(\boldsymbol{\xi}, \hat{\boldsymbol{R}})$$

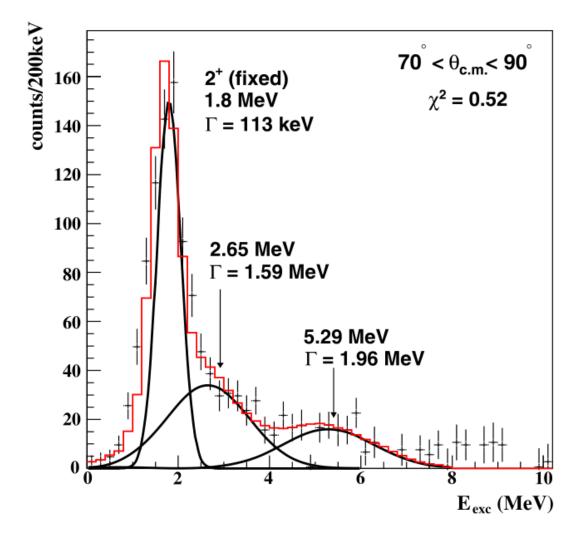
$$K_n = \frac{\sqrt{2\mu(E - \epsilon_n^I)}}{\hbar} \qquad \mathcal{Y}_{JM}^{nIL}(\boldsymbol{\xi}, \hat{\boldsymbol{R}}) = \left[\Phi_n^I(\boldsymbol{\xi}) \otimes i^L Y_L(\hat{\boldsymbol{R}})\right]_{JM}$$

$$\boldsymbol{\xi} = \{\boldsymbol{x}, \boldsymbol{y}\} \qquad J, M : \text{ total spin and its projection on z-axis, } I : \text{ spin of } ^6\text{He}$$

Schrödinger equation of radial direction

$$\begin{split} \left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} + \frac{\hbar^2}{2\mu} \frac{L(L+1)}{R^2} + U_{\gamma\gamma} + \frac{Z_p Z_{^6\text{He}} e^2}{R} - (E - \epsilon_n^I) \right] \chi_{\gamma}(K_n, R) &= -\sum_{\gamma' \neq \gamma} U_{\gamma\gamma'} \chi_{\gamma'}(K_{n'}, R) \\ U_{\gamma\gamma'}(R) &= \frac{A_P - 1}{A_P} \int \rho_{\gamma\gamma'}(s, \hat{R}) g_i(E, \bar{\rho}, R_j) ds d\hat{R} \qquad \gamma = \{n, I, L\} \\ \text{JLM effective NN interaction} \\ \rho_{\gamma\gamma'}(s, \hat{R}) &= \langle \mathcal{Y}_{JM}^{\gamma} | \sum_{i \in ^6\text{He}} \delta(s - s_i) | \mathcal{Y}_{JM}^{\gamma'} \rangle_{\boldsymbol{\xi}} \quad \bar{\rho}(s) = \frac{1}{2} \int \{\rho_{\gamma\gamma}(s, \hat{R}) + \rho_{\gamma'\gamma'}(s, \hat{R})\} d\hat{s} d\hat{R} \\ \text{This is calculated with } ^6\text{He wavefunction.} \end{split}$$

$p(^{8}\text{He, }t)$



X. Mougeot, et al., Phys. Lett. B 718 (2012), 441.