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Properties of Neutron Stars (NSs)
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 セミナー@九州産業大


R ~10-14km

M/M⨀ ~ 1.4 – 2.0 

ρ ~1015 g/cm3


ρs = 2.68 ×10
14 g / cm3

<nuclear density>
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NSs


•  produce via supernova


•  extreme state


–  high density inside the star;  
central density may become ~5 x nuclear density


–  strong magnetic field;  
existence of “magnetars”, where B~1014 G 
stronger than the critical field strength of the quantum electrodynamics


–  strong gravitational field; 
GM/Rc2 ~ 0.2 (NS),  0.2 x 10-5 (Sun), 0.7 x 10-9 (Earth)


•  NSs are a unique environment for understanding the physics under 
such extreme conditions
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How to construct NSs


•  Tolman-Oppenheimer-Volkoff (TOV) equation gives density profile 
of the spherically symmetric equilibrium of cold NSs. 
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Cold NS & EOS
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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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information from 
terrestrial nuclear 

experiments


NS observations can make a constraint on EOS!!




EOS near the saturation point

•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature;
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Any EOSs can be 
characterized by the 
saturation parameters




constraints on L
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Li et al. 19


L ≈ 58.9 ± 16 MeV

S0 ≈ 31.6 ± 2.7 MeV


Page 8 of 75 Eur. Phys. J. A (2019) 55: 117

Fig. 5. (Color online) Central values of Esym(ρ0) and L(ρ0) from 28 model analyses of terrestrial nuclear experiments and
astrophysical observations. Modified from similar plots in ref. [75] by updating the result of Sotani et al. in their analyses of the
quasi-periodic oscillations of neutron stars [76,77].

Fig. 6. (Color online) The radial part of the tensor force due
to pion and ρ meson exchange at densities of ρ = 0, ρ0, 2ρ0,
and 3ρ0 with the in-medium ρ mass of m⋆

ρ/mρ = 1 − 0.2ρ/ρ0.
Taken from ref. [78].

3.2 The role of the tensor force in the isosinglet
nucleon-nucleon interaction channel

The second-order tensor contribution to nuclear symmetry
energy has been studied for a long time, see, e.g., refs. [92–
95]. It is approximately

⟨Vsym⟩ =
12
eeff

⟨V 2
t (r)⟩, (15)

where eeff ≈ 200MeV and Vt(r) is the radial part of the
tensor force [95]. In the one-boson-exchange picture, the
tensor interaction results from exchanges of the isovector
π and ρ mesons. The tensor part of the one-pion exchange
potential can be written as [96–98]

Vtπ = − f2
π

4π
mπ(τ1 · τ2)S12

·
[

1
(mπr)3

+
1

(mπr)2
+

1
3mπr

]
exp(− mπr) (16)

where r is the inter-particle distance and

S12 = 3
(σ1 · r)(σ1 · r)

r2
− (σ2 · σ2) (17)

is the tensor operator. The ρ-exchange tensor interaction
Vtρ has the same functional form but an opposite sign,
namely, the mπ is replaced everywhere by mρ, and the
f2

π by − f2
ρ . The magnitudes of both the π and ρ contri-

butions grow quickly but in opposite directions with de-
creasing r as the density increases. The net result from
the π and ρ exchanges depends strongly on the poorly
known ρ-nucleon coupling strength. Moreover, while there
is still no solid experimental confirmation, it is possible
that the in-medium ρ meson mass mρ is different from its
free-space value. A density-dependent in-medium ρ me-
son mass mρ leads to very different tensor forces in dense
medium [96–98], and thus different Esym(ρ) at high densi-
ties [78,88,89,99,100]. As an illustration, shown in fig. 6 is

K0 ≈ 230 ± 20 MeV


fiducial values


(Shlomo+ 06, Piekarewicz 10)




neutron stars

•  Structure of NS


– solid layer (crust)


– nonuniform structure (pasta)


– fluid core (uniform matter)





•  In particular, the nuclear saturation  
parameters become important in


•  physics in crust region


•  low-mass NSs itself


Oyamatsu (1993)


crust


core
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ρ ≈ ρs



pasta phase




•  Whether pasta phase exists or not depends strongly on L.


•  For L ≳ 100MeV, pasta structure almost disappears.


SYMMETRY ENERGY AT SUBNUCLEAR DENSITIES AND . . . PHYSICAL REVIEW C 75, 015801 (2007)

the nucleon part nw + mnc
2nn + mpc2np [see Eq. (1)] and

the electron part (15). By comparing the resultant six energy
densities, we can determine the equilibrium phase.

III. EQUILIBRIUM SIZE AND SHAPE OF NUCLEI

We proceed to show the results for the equilibrium nuclear
matter configuration obtained for various sets of the EOS
parameters L and K0 as shown in Fig. 1. These parameters are
still uncertain because they are little constrained from the mass
and radius data for stable nuclei [2]. As we shall see, the charge
number of spherical nuclei and the density region containing
bubbles and nonspherical nuclei have a strong correlation
with L.

We first focus on spherical nuclei, which constitute an
equilibrium state in the low-density region. We calculate the
charge number of the equilibrium nuclide as a function of nbfor
the EOS models A–I as depicted in Fig. 2. Note that the recent
GFMC calculations of the energy of neutron matter based on
the Argonne v8’ potential [15] are close to the behavior of
the model E. Hereafter we will thus call the model E as a
typical one. The result is shown in Fig. 3. For densities below
∼0.01 fm−3, the calculated density dependence of the charge
number Z is almost flat, a feature consistent with the results
in earlier investigations [1]. More important, the calculated
charge number is larger for the EOS models having smaller L,
and this difference in Z is more remarkable at higher densities.

As we shall see later in this section, this property of
Z is related to the tendency that with increasing L, the
nuclear density decreases while the density of the neutron
gas increases. Note that Z is, within a liquid-drop model [1],
determined by the size equilibrium condition relating the
Coulomb and surface energies in such a way that Z increases
with increasing surface tension. Because the Thomas-Fermi
model adopted here can be mapped onto a compressible liquid-
drop model [2], the present results may well be interpreted in
terms of the liquid-drop model. In fact we shall estimate the
surface tension from the Thomas-Fermi model as a function of
L and discuss how the surface tension depends on the nuclear
density and the neutron sea density.

We also note that the density at which the phase with
spherical nuclei ceases to be in the ground state is between
0.05 and 0.07 fm−3. This result, consistent with the results
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FIG. 3. (Color online) The charge number of spherical nuclei as
a function of nb, calculated for the EOS models A–I.
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obtained in earlier investigations [1,7,10], will be discussed
below in terms of fission instability.

The average proton fraction, which is the charge number
divided by the total nucleon number in the cell, is plotted in
Fig. 4. We observe that the dependence of the average proton
fraction on the EOS models is similar to that of Z. We also
find that the average proton fraction basically decreases with
baryon density. This is a feature coming from the fact that as
the baryon density increases, the electron chemical potential
increases under charge neutrality and then the nuclei become
more neutron-rich under weak equilibrium.

We next consider the density region where bubbles and
nonspherical nuclei appear in equilibrium, i.e., the density
region of the “pasta” phases. We start with such a density
region calculated for the EOS models A–I. The results are
plotted in Fig. 5. Except for the model C, we obtain the
successive first order transitions with increasing density:
sphere → cylinder → slab → cylindrical hole → spherical
hole → uniform matter. A marked correlation of the upper end
of the density region with the parameter L can be observed by
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clustering in uniform nuclear matter, which will be discussed in
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uniform matter


spherical nuclei


pasta phase
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mass formula


•  well-known mass formula of stable nuclei

–  Bethe-Weizacker mass formula

–  due to the density saturation 


•  How about NSs ?

–  structure of NS is determined as a result of balance of 

gravity & pressure gradient.

–  in general, not so simple…


•  we are successful to derive a mass formula of low-mass NS

–  as functions of nuclear saturation parameter η & central 

density

–  almost independent of the EOS models
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ρc


P = 0

TOV eqs.





EOS


you can get a NS model !!




low-mass NS models


•  low-mass NSs

–  low-central density


–  EOS for low-density region plays an important role


•  EOS of nuclear matter for ρ≲ρ0 (normal nuclear density) would 
be determined with reasonable accuracy by terrestrial nuclear 
experiments.
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RAPID COMMUNICATIONS

MAXIMUM MASS AND RADIUS OF NEUTRON STARS, AND . . . PHYSICAL REVIEW C 85, 032801(R) (2012)
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FIG. 1. (Color online) The energy per particle of neutron matter
for different values of the nuclear symmetry energy (Esym). For
each value of Esym the corresponding band shows the effect of
different spatial and spin structures of the three-neutron interaction.
The inset shows the linear correlation between Esym and its density
derivative L.

[26] we obtain an empirical constraint for neutron matter
energy Eneutron(ρ0) = 16 ± 2 MeV. Potential higher-order cor-
rections to the quadratic nuclear symmetry energy, for which
there is some theoretical motivation but no clear experimental
evidence, may affect the extraction of the neutron matter
energy and increase the associated error. In this work we ignore
these poorly known corrections and tune AR to reproduce the
neutron matter energy in the range 16 ± 2 MeV. Our results
are shown in Fig. 1, where the green and blue points are
QMC results for different choices of AR corresponding to
Eneutron(ρ0) = 16 MeV(Esym = 32 MeV) and Eneutron(ρ0) =
17.7 MeV(Esym = 33.7 MeV), respectively. The results are
compared to those obtained using a 2n force without 3n
(Esym = 30.5 MeV) and 2n combined with the Urbana IX
3n (Esym = 35.1 MeV). The bands depict the sensitivity to
short-distance spin and spatial structure of the 3n interaction
and are obtained by varying the range of the 3n short-distance
force and A3π .

In the vicinity of nuclear density, Eneutron(ρ) =
Eneutron(ρ0) + L/3(ρ − ρ0)/ρ0, where L is related to the
derivative of the nuclear symmetry energy. The inset in Fig. 1
shows the correlation between Esym and L. This correlation is
insensitive to the large variations in the range of the short-range
3n force µ and the strength of the 3π term A3π . This is in sharp
contrast to the predictions of mean-field theories where the
slope was found to be very sensitive to the choice of effective
interactions [27]. Previous calculations of neutron matter up
to ρ0 [28] use a chiral 2n interaction fit to laboratory energies
of 350 MeV plus the two-pion exchange three-nucleon inter-
action to calculate the neutron matter equation of state using
perturbation theory. In contrast to our results, a significant
repulsion from the 2π exchange long-range 3n interaction
was found. Since this force is better constrained by light
nuclei, these earlier calculations can make a prediction for the
neutron matter energy independent of the phenomenological
short-range interaction, which plays an important role in

TABLE I. Fitting parameters for the neutron matter EoS defined
in Eq. (3) for selected different Hamiltonians.

3N force Esym L a α b β

(MeV) (MeV) (MeV) (MeV)

none 30.5 31.3 12.7 0.49 1.78 2.26
V PW

2π + V R
µ=150 32.1 40.8 12.7 0.48 3.45 2.12

V PW
2π + V R

µ=300 32.0 40.6 12.8 0.488 3.19 2.20
V3π + VR 32.0 44.0 13.0 0.49 3.21 2.47
V PW

2π + V R
µ=150 33.7 51.5 12.6 0.475 5.16 2.12

V3π + VR 33.8 56.2 13.0 0.50 4.71 2.49
UIX 35.1 63.6 13.4 0.514 5.62 2.436

our calculation. To understand this basic difference, further
tests of the convergence of perturbation theory and the chiral
expansion in the diagrammatic calculations, a survey of other
two-body interactions in the AFDMC, and the incorporation of
chiral interactions in nonperturbative methods such as lattice
and suitable extension of QMC would be necessary.

Current determinations of L have relied on analysis of
neutron skins, surface contributions to the symmetry energy of
neutron-rich nuclei, and isospin diffusion in heavy-ion reac-
tions. These studies have been useful but not very constraining
as acceptable values are in the range L = 40–100 MeV [25].
However, a better determination of L even with modest
reduction in the error would test our model for 2n and 3n
interactions.

The predictions of QMC can be accurately fit using

E(ρ) = a

(
ρ

ρ0

)α

+ b

(
ρ

ρ0

)β

, (3)

where the coefficients a and α are sensitive to the low-density
behavior of the EoS, while b and β are sensitive to the
high-density physics [29]. We find that the 3n force plays
a key role in determining the coefficient b and the variation of
the other EoS parameters is comparatively small. Numerical
values for these parameters are reported in Table I for selected
Hamiltonians.

To calculate the mass and radius of neutron stars we solve
the Tolman-Oppenheimer-Volkoff (TOV) equations for the
hydrostatic structure of a spherical nonrotating star using
the QMC equation of state for neutron matter [30,31]. The
QMC EoS we use is for ρ ! ρcrust = 0.08 fm−3. Below this
density we use the EoS of the crust obtained in earlier works
in Refs. [32,33].

The neutron star mass-radius predictions are obtained by
varying the 3n force and are shown in Fig. 2. The striking
feature is the estimated error in the neutron star radius with a
canonical mass of 1.4Msolar. The uncertainty in the measured
symmetry energy of ±2 MeV leads to an uncertainty of about
3 km for the radius, while the uncertainties in the short-distance
structure of the 3n force predicts a radius uncertainty of "1 km.
The different bands of Fig. 2 correspond to the EoS of Fig. 1
with the same colors, giving different values of Esym.

The central density of stars with M # 1.5Msolar are larger
than 3ρ0. At these higher densities, effects such as relativistic
corrections to the kinetic energy, retardation in the potential,
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low-mass NS models


•  low-mass NSs

–  low-central density


–  EOS for low-density region plays an important role


•  EOS of nuclear matter for ρ≲ρ0 (normal nuclear density) 
would be determined with reasonable accuracy by 
terrestrial nuclear experiments.


•  For ρ≲ 2ρ0, one can almost neglect an uncertainty of 
three nucleon interaction (Gandolfi+12) and contribution 
from hyperon (or quark etc...).


          we especially focus on the NS models for ρ≲ 2ρ0 
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M




unified EOS modes

•  unified-EOS models


–  based on the EOSs of nuclear matter with specific values of 
K0 & L


–  consistent with empirical data of masses and radii of stable 
nuclei


–  describing both the crustal and core regions of NS


•  we especially focus on

–  phenomenological EOS with various K0 & L  

(Oyamatsu & Iida 03; 07)

–  EOSs based on relativistic mean field models


•  Shen EOS (Shen+ 98) 

•  Miyatsu EOS (Miyatsu+ 13)


–  Skyrme-type effective interaction

•  FPS (Pethick+ 95),

•  SLy4 (Douchin & Haensel 01)

•  BSk19, BSk20, BSk21 (Potekhin+ 13)
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EOSs based on the different

theoretical models




MR relations

•  NS models are constructed with various sets of K0 & L


•  We can find the specific combination of K0 & L describing 
the low-mass NSs,
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vanishes. It is not clear up to what density the adopted unified-EOSs are applicable. Nonetheless,

one can expect that the uncertainty from three-neutron interactions in the EOS of pure neutron

matter becomes relevant for ρ ! 2ρ0, as suggested by quantum Monte Carlo calculations28. We

thus examine the stellar models for ρc ≤ 2ρ0.

Fig. 1(a) shows the resultant M -R relation. To systematically describe various stellar models,

we introduce a new auxiliary parameter η defined as

η = (K0L
2)1/3. (1)

Remarkably, the M -R relation changes almost smoothly with η. In fact, we carefully chose the

powers of the parameters K0 and L in finding η. Note that we do not adopt the OI-EOS with

L " 10 MeV14, 15, because the pressure can become negative inside the star, which may tell us the

lower limit of η as η ! 30 MeV. Meanwhile, the upper limit sets that η " 200 MeV (Extended

Data Table 1) to examine in the wide-range parameter space, which is significantly higher than the

usual expectations in the nuclear physics7.

From the observational viewpoint, the radiation radius R∞ = R/
√

1 − 2GM/Rc2 and the

gravitational redshift z = 1/
√

1 − 2GM/Rc2 − 1 may be more relevant in describing the stellar

properties, which relation can be written as in Fig. 1(b). Actually, the detected photon flux is

proportional to (R∞/D)2, where D is the distance from the Earth. The gravitational redshift is

associated with the shift of atomic absorption lines emitted from stellar surface.

The smooth change of the stellar properties with η suggests that not only future terrestrial

4

Table 1: EOS parameters. K0 is incompressibility, L is the density dependence of the nu-

clear symmetry energy, and η is a new nuclear matter parameter defined as η = (K0L2)1/3.

EOS K0 (MeV) L (MeV) η (MeV)

OI-EOS 180 31.0 55.7

180 52.2 78.9

230 42.6 74.7

230 73.4 107.4

280 54.9 94.5

280 97.5 138.6

360 76.4 128.1

360 146.1 197.3

Shen 281 114 154.0

Miyatsu 274 77.1 117.7

FPS 261 34.9 68.2

SLy4 230 45.9 78.5

BSk19 237 31.9 62.3

BSk20 241 37.4 69.6

BSk21 246 46.6 81.1

15

ρc < 2ρ0


GW170817


128.1


117.7


η ≲ 125 MeV


EFFECT OF NUCLEAR SATURATION PARAMETERS ON A . . . PHYSICAL REVIEW C 95, 025802 (2017)

FIG. 1. Mass and radius relation for various EOSs for lower-density regions with η = 50.6 (dashed line), 74.7 (dotted line), and 107.4
(solid line). The left, middle, and right panels correspond to different sound velocities for higher-density regions, i.e., α = 1/3, 0.6, and 1,
respectively. The open marks correspond to the stellar models with maximum mass for various EOS models, while the solid marks correspond
to the stellar models with local maximum radii. For reference, the stellar models constructed with the central density ρc = 2ρ0 are denoted by
the double circles.

for various EOS models. From this figure, I find that the
maximum mass strongly depends on the possible maximum
sound velocity inside the star, while the dependence on η is
relatively weak. Additionally, the solid marks in the figure
denote the local maximum of the stellar radius for various
EOS models, which tells us that the local maximum radius
becomes larger with α.

To see the dependence of the maximum mass on η, in Fig. 2
I plot the maximum mass predicted from the various values of
η for the cases of α = 1/3, 0.6, and 1. From this figure, one
can observe that the maximum mass with a fixed value of α is
well fitted as a linear function of η, such as

Mmax

M⊙
= a1 + a2

(
η

1 MeV

)
, (4)

where a1 and a2 are coefficients in the linear fitting, depending
on the value of α. In Fig. 2, the linear fittings given as Eq. (4)
for α = 1/3, 0.6, and 1 are shown with the solid, dashed, and
dotted lines, respectively.

FIG. 2. The expected maximum masses for various EOS models
are shown with different marks, while the solid, dashed, and dotted
lines, respectively, denote the fitting formulas given by Eq. (4) for
α = 1/3, 0.6, and 1. In the legend, I show the values of the saturation
parameters for the adopted EOS, such as (−y,K0). The region
between the horizontal dot-dashed lines denotes the mass observation
of PSR J1614–2230 [3], while the horizontal shaded region denotes
the mass observation of PSR J0348+0432 [4]. The stippled region
denotes a plausible range for η determined from the current terrestrial
nuclear experiments.

With respect to the value of η, by adopting fiducial values
of 30 ! L ! 80 MeV [11] and K0 = 230 ± 40 MeV [12],
one can get a plausible range for η as 55.5 ! η ! 120 MeV.
This plausible range of η is shown in Fig. 2 as the stippled
region, while the observations of neutron star masses, i.e.,
M = (1.97 ± 0.04)M⊙ [3] and M = (2.01 ± 0.04)M⊙ [4], are
also shown in the same figure. To explain the observations
of neutron star masses, the case with α = 1/3, which comes
from the conjecture of Ref. [7], seems to be marginal with the
plausible range of η. In practice, to explain the lower limit of a
neutron star mass of PSR J0348+0432, i.e., M = 1.97M⊙, η
should be larger than ∼100 MeV, which leads to the constraint
of L " 66 MeV with adopting the canonical value of K0 =
230 MeV.

In a way similar to the discussion about the maximum
mass, I additionally find that the radius for a neutron star with
maximum mass with a fixed α can be well described as a linear
function of η as shown in Fig. 3. Thus, I can get a linear fit,
such as

R

1 km
= b1 + b2

(
η

1 MeV

)
, (5)

FIG. 3. The expected radii for the stellar models with maximum
mass constructed with various EOS models are shown with different
marks, while the solid, dashed, and dotted lines, respectively, denote
the fitting formula given by Eq. (5) for α = 1/3, 0.6, and 1. In the
legend, I show the values of the saturation parameters for the adopted
EOS, such as (−y,K0). The stippled region denotes a plausible range
for η determined from the current terrestrial nuclear experiments.

025802-3

L	=	30-80	MeV,	K0	=	190-270	MeV	
(η	=	92.75	MeV;	L	=	58.9	MeV,	K0	=	230	MeV)	



mass formula
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Figure 2: Neutron star masses in (a) and the gravitational redshifts of neutron star in (b) as a function of η. The

stellar models with the various unifrid-EOSs are constructed for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0. The solid, broken, and

dotted lines are the linear fitting to the cases of ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 (see text for details).
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Figure 3: The correspondence between the coefficients obtained in Eq. (2) and the quadratic fitting curve as a

function of ρc/ρ0. In the figure, the marks denote the coefficients obtained in Eq. (2), while the solid and broken lines

correspond to the fitting curve for c0 and c1. We consider the stellar models only for ρc ! 0.9ρ0 to avoid the unstable

neutron star models.
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nuclear experiments but also simultaneous measurements of stellar properties, such as M and R,

could constrain η, which could in turn lead to restriction of stellar models. In particular, observa-

tions of low-mass neutron stars would be essential. For example, the radiation radius of the X-ray

source, CXOU 132619.7–472910.8, in the globular cluster NGC 5139 (ω Cen) has been deter-

mined as R∞ = 14.3 ± 2.1 km from the Chandra data29. The allowed region from this radiation

radius is shown in Fig. 1(a) and (b) with the shaded region. This is consistent with various values

of η, but future precise determination of R∞ could constrain η, if M is low enough. Additionally,

thermal spectra detected from quiescent low-mass X-ray binaries are expected to give M and R

simultaneously5, 6, which could tell us a stringent constraint on η.

To examine the dependence of the stellar properties on η more clearly, we plot the stellar

masses for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 in Fig. 2(a). From this figure, we find that the stellar

masses with the fixed central density can be approximately expressed as a linear function of η,

M

M⊙
= c0 + c1

( η

100 MeV

)
, (2)

where c0 and c1 are constants depending on ρc. The validity of η is now evident. The deviation

from this formula for ρc = 2ρ0 is larger than that for ρc = ρ0, which could be due to the effect of

three-nucleon interaction. Moreover, we find that the coefficients in equation (2) can be expressed

well with the quadratic curve as a function of uc ≡ ρc/ρ0 within the accuracy less than a few

percent as in Fig. 3. Finally, we can derive the mass formula of low-mass neutron stars;

M

M⊙
= 0.371 − 0.820uc + 0.279u2

c − (0.593 − 1.254uc + 0.235u2
c)

( η

100 MeV

)
, (3)

where we consider the stellar models for ρc ! 0.9ρ0, because the stellar models for ρc " 0.9ρc can

5



•  via the simultaneous observations of M & z (or R or R∞), one 
could extract the values of η& ρc !!
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Figure 2: Neutron star masses in (a) and the gravitational redshifts of neutron star in (b) as a function of η. The

stellar models with the various unifrid-EOSs are constructed for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0. The solid, broken, and

dotted lines are the linear fitting to the cases of ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 (see text for details).
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become unstable, depending on EOSs.

We also find that the gravitational redshift with the fixed central density can be approximately

expressed as a linear function of η, as in Fig. 2(b). Then, in the same way to derive equation (3),

we can derive the theoretical formula of gravitational redshift

z = 0.00859 − 0.0619uc + 0.0255u2
c − (0.0429 − 0.108uc + 0.0120u2

c)
( η

100 MeV

)
. (4)

Via the simultaneous observations of mass and gravitational redshift could tell us the nuclear matter

parameter η and ρc, using equations (3) and (4).

Futhermore, we plot the stellar radii for ρc = 1.5ρ0 and 2.0ρ0 in Fig. 4. From this figure,

one can observe that the stellar radii strongly depend on the central density for η ! 90 MeV, while

converging to an almost linear function of η for η " 90 MeV expressed as

R [km] = 10.32 + 2.57
( η

100 MeV

)
. (5)

Note that this converging behavior holds for ρc = 1.5ρ0 ∼ 2ρ0. Again, one could find not only η

but also ρc with the mass and radius formulae derived here, via the direct observations of masses

and radii of low-mass neutron stars.

In summary, we have been first successful to derive the theoretical formulae of mass, radius,

and gravitational redshift for low-mass neutron stars, as functions of the stellar central density and

a new nuclear matter parameter η we found here. Via the direct observations of low-mass neutron

stars, such as the low-mass X-ray binaries, one can extract not only the nuclear matter parameter

but also the stellar central density, which enables us to unlock the neutron star physics.

6

nuclear experiments but also simultaneous measurements of stellar properties, such as M and R,

could constrain η, which could in turn lead to restriction of stellar models. In particular, observa-

tions of low-mass neutron stars would be essential. For example, the radiation radius of the X-ray

source, CXOU 132619.7–472910.8, in the globular cluster NGC 5139 (ω Cen) has been deter-

mined as R∞ = 14.3 ± 2.1 km from the Chandra data29. The allowed region from this radiation

radius is shown in Fig. 1(a) and (b) with the shaded region. This is consistent with various values

of η, but future precise determination of R∞ could constrain η, if M is low enough. Additionally,

thermal spectra detected from quiescent low-mass X-ray binaries are expected to give M and R

simultaneously5, 6, which could tell us a stringent constraint on η.

To examine the dependence of the stellar properties on η more clearly, we plot the stellar

masses for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 in Fig. 2(a). From this figure, we find that the stellar

masses with the fixed central density can be approximately expressed as a linear function of η,
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where c0 and c1 are constants depending on ρc. The validity of η is now evident. The deviation

from this formula for ρc = 2ρ0 is larger than that for ρc = ρ0, which could be due to the effect of

three-nucleon interaction. Moreover, we find that the coefficients in equation (2) can be expressed
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vanishes. It is not clear up to what density the adopted unified-EOSs are applicable. Nonetheless,

one can expect that the uncertainty from three-neutron interactions in the EOS of pure neutron

matter becomes relevant for ρ ! 2ρ0, as suggested by quantum Monte Carlo calculations28. We

thus examine the stellar models for ρc ≤ 2ρ0.

Fig. 1(a) shows the resultant M -R relation. To systematically describe various stellar models,

we introduce a new auxiliary parameter η defined as

η = (K0L
2)1/3. (1)

Remarkably, the M -R relation changes almost smoothly with η. In fact, we carefully chose the

powers of the parameters K0 and L in finding η. Note that we do not adopt the OI-EOS with

L " 10 MeV14, 15, because the pressure can become negative inside the star, which may tell us the

lower limit of η as η ! 30 MeV. Meanwhile, the upper limit sets that η " 200 MeV (Extended

Data Table 1) to examine in the wide-range parameter space, which is significantly higher than the

usual expectations in the nuclear physics7.

From the observational viewpoint, the radiation radius R∞ = R/
√

1 − 2GM/Rc2 and the

gravitational redshift z = 1/
√

1 − 2GM/Rc2 − 1 may be more relevant in describing the stellar

properties, which relation can be written as in Fig. 1(b). Actually, the detected photon flux is

proportional to (R∞/D)2, where D is the distance from the Earth. The gravitational redshift is

associated with the shift of atomic absorption lines emitted from stellar surface.

The smooth change of the stellar properties with η suggests that not only future terrestrial
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radii of low-mass NSs


•  with using the formulas of mass and gravitational redshift, 
one can also predict the radius of NS. 
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Fig. 4.— Neutron star radii as a function of η. The stellar models constructed from various

unified EOSs are given for ρc = 1.0ρ0 (black), 1.5ρ0 (red), and 2.0ρ0 (blue). The solid,

broken and dotted lines are the the formula values for the cases of ρc = 2.0ρ0, 1.5ρ0, and

1.0ρ0, respectively, obtained from equations (2) and (3). The thick straight line denotes the

converging behavior expressed by equation (4).



possible maximum mass of NSs

•  parameterize EOS (Hartle 78, Kalogera+ 96)


–  for             :  stellar properties strongly depend on η


–  for             :                              , where
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TABLE I. Saturation parameters in OI-EOS and an auxiliary
parameter η ≡ (K0L

2)1/3.

y (MeV fm3) K0 (MeV) L (MeV) η (MeV)

−220 180 52.2 78.9
−220 230 73.4 107.4
−220 280 97.5 138.6
−220 360 146.1 197.3
−350 180 31.0 55.7
−350 230 42.6 74.7
−350 280 54.9 94.5
−350 360 76.4 128.1
−600 230 23.7 50.6
−600 280 30.1 63.4
−600 360 40.9 84.4

the saturation point of symmetric nuclear matter, for which the
number of protons is equal to that of neutrons, as a function
of the baryon number density nb and the neutron excess α, as
discussed in Ref. [14]:

w = w0 + K0

18n2
0

(nb − n0)2 +
[
S0 + L

3n0
(nb − n0)

]
α2, (1)

where w0 and K0 are the saturation energy and incompressibil-
ity at the saturation density, n0, of symmetric nuclear matter,
while S0 and L are associated with the density-dependent
nuclear symmetry energy. w0, n0, and S0, which are absolute
values at the saturation point, are relatively constrained well via
terrestrial nuclear experiments, owing to the nuclear saturation.
Meanwhile, because K0 and L change rapidly at the saturation
point, one has to obtain experimental data in a wide range of
densities around the saturation point. Thus, it is more difficult
to fix the values of K0 and L via the terrestrial experiments. For
this reason, I focus on K0 and L as parameters characterizing
the EOS.

In practice, to systematically analyze the dependence of
neutron star properties on the saturation parameters K0 and
L, I adopt the phenomenological EOS proposed by Oyamatsu
and Iida [15,16]. This EOS is constructed in such a way that
the energy of uniform nuclear matter reproduces to the form as
in Eq. (1) in the limit of nb → n0 and α → 0 for various values
of y ≡ −K0S0/(3n0L) and K0. For given K0 and y, the other
saturation parameters n0, w0, and S0 are determined to fit the
empirical data for masses and radii of stable nuclei [15,16].
Hereafter, I denote this phenomenological EOS as OI-EOS.
In particular, I focus on the parameters K0, L, and y in
the ranges of 180 ! K0 ! 360 MeV, 0 < L < 160 MeV, and
y < −200 MeV fm3, respectively, which can reproduce the
mass and radius data for stable nuclei well and can effectively
cover even extreme cases [15]. The concrete parameter sets
adopted in this paper are shown in Table I, where η is an
auxiliary parameter defined as η = (K0L

2)1/3 [8]. I remark that
the low-mass neutron star models where the central density is
up to ρc = 2ρ0 can be described well with the parameter η
independently of the nuclear theoretical models [8,9].

On the other hand, several EOSs have been suggested for
the density region higher than ∼2ρ0, which are based on the
different nuclear theories, interactions, and components. The

theoretical constraints on EOSs are only that the sound speed
should be less than the speed of light (causality) and that
the sound speed should be more than zero (thermodynamics
stability). So, the stiffest EOS satisfying the theoretical
constraints can be expressed in the density region of ρ > ρt ,
such as

p = ρ − ρt + pt , (2)

where ρt is a transition density and pt is the pressure
determined at ρ = ρt with the EOS for lower-density regions.
Adopting this type of EOS for high-density regions and
connecting to the Harrison-Wheeler EOS for lower density at
ρt = 4.6 × 1014 g/cm3, the maximum mass of a neutron star
is expected to be Mmax ≃ 3.2M⊙ [5,18]. However, because
the stellar properties in the density region of ρ " 2ρ0 strongly
depend on η [8,9], the maximum mass of a neutron star could
also depend on η even if one fixes the transition density ρt .

In addition, it has been conjectured that the sound velocity
inside the star should be smaller than the speed of light in
vacuum divided by

√
3 [7]. With this conjecture, the stiffest

EOS for higher-density regions can be expressed as p = (ρ −
ρt )/3 + pt . Because this EOS becomes softer than the EOS
given by Eq. (2), the possible maximum mass becomes smaller.
In practice, the neutron star mass was discussed with this
conjecture for ρt = 2ρ0, where the possible maximum mass
is ∼2M⊙ [7]. So, if a neutron star more massive than ∼2M⊙
were to be discovered, this conjecture may not be good. In fact,
a candidate for a massive neutron star has been discovered in a
neutron star and white dwarf binary system, where the mass of
the neutron star is estimated as M = (2.74 ± 0.21)M⊙ [17].

In one way or another, the possible maximum sound
velocity inside the star, which is associated with the stiffness
of the EOS, must affect the determination of the maximum
mass of neutron stars. Thus, to examine the dependence of
the possible maximum sound velocity inside the star (or the
stiffness of the EOS) on the maximum mass of a neutron star,
I consider a general formula for the EOS given by

p = α(ρ − ρt ) + pt , (3)

where α is a parameter associated with the possible maximum
sound velocity inside the star, i.e., vmax

s =
√

α [18]. For this
examination, I adopt the OI-EOS for lower-density regions
up to ρt = 2ρ0, i.e., pt is the pressure determined with the
OI-EOS at the transition density ρt , and I adopt the EOS given
by Eq. (3) for ρ > 2ρ0. I remark that I simply connect the EOS
for lower- and higher-density regions at the transition density
as in Ref. [7]. Thus, the EOS is almost continuous, but the
sound velocity is not continuous at the transition density. In
this paper, I focus on α in the range of 1/3 ! α ! 1. Then, I
determine the dependence of the maximum mass on η and α.

III. POSSIBLE MAXIMUM MASS

The spherically symmetric neutron star models are con-
structed by integrating the Tolman-Oppenheimer-Volkoff
equation together with the appropriate EOS. As an example,
in Fig. 1, I show the relation between the stellar mass and the
radius for the cases of α = 1/3, 0.6, and 1 with η = 50.6, 74.7,
and 107.4, where open marks denote the maximum masses
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while S0 and L are associated with the density-dependent
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values at the saturation point, are relatively constrained well via
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In practice, to systematically analyze the dependence of
neutron star properties on the saturation parameters K0 and
L, I adopt the phenomenological EOS proposed by Oyamatsu
and Iida [15,16]. This EOS is constructed in such a way that
the energy of uniform nuclear matter reproduces to the form as
in Eq. (1) in the limit of nb → n0 and α → 0 for various values
of y ≡ −K0S0/(3n0L) and K0. For given K0 and y, the other
saturation parameters n0, w0, and S0 are determined to fit the
empirical data for masses and radii of stable nuclei [15,16].
Hereafter, I denote this phenomenological EOS as OI-EOS.
In particular, I focus on the parameters K0, L, and y in
the ranges of 180 ! K0 ! 360 MeV, 0 < L < 160 MeV, and
y < −200 MeV fm3, respectively, which can reproduce the
mass and radius data for stable nuclei well and can effectively
cover even extreme cases [15]. The concrete parameter sets
adopted in this paper are shown in Table I, where η is an
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2)1/3 [8]. I remark that
the low-mass neutron star models where the central density is
up to ρc = 2ρ0 can be described well with the parameter η
independently of the nuclear theoretical models [8,9].

On the other hand, several EOSs have been suggested for
the density region higher than ∼2ρ0, which are based on the
different nuclear theories, interactions, and components. The
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should be less than the speed of light (causality) and that
the sound speed should be more than zero (thermodynamics
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ρt = 4.6 × 1014 g/cm3, the maximum mass of a neutron star
is expected to be Mmax ≃ 3.2M⊙ [5,18]. However, because
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depend on η [8,9], the maximum mass of a neutron star could
also depend on η even if one fixes the transition density ρt .

In addition, it has been conjectured that the sound velocity
inside the star should be smaller than the speed of light in
vacuum divided by
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3 [7]. With this conjecture, the stiffest
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given by Eq. (2), the possible maximum mass becomes smaller.
In practice, the neutron star mass was discussed with this
conjecture for ρt = 2ρ0, where the possible maximum mass
is ∼2M⊙ [7]. So, if a neutron star more massive than ∼2M⊙
were to be discovered, this conjecture may not be good. In fact,
a candidate for a massive neutron star has been discovered in a
neutron star and white dwarf binary system, where the mass of
the neutron star is estimated as M = (2.74 ± 0.21)M⊙ [17].

In one way or another, the possible maximum sound
velocity inside the star, which is associated with the stiffness
of the EOS, must affect the determination of the maximum
mass of neutron stars. Thus, to examine the dependence of
the possible maximum sound velocity inside the star (or the
stiffness of the EOS) on the maximum mass of a neutron star,
I consider a general formula for the EOS given by

p = α(ρ − ρt ) + pt , (3)

where α is a parameter associated with the possible maximum
sound velocity inside the star, i.e., vmax

s =
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α [18]. For this
examination, I adopt the OI-EOS for lower-density regions
up to ρt = 2ρ0, i.e., pt is the pressure determined with the
OI-EOS at the transition density ρt , and I adopt the EOS given
by Eq. (3) for ρ > 2ρ0. I remark that I simply connect the EOS
for lower- and higher-density regions at the transition density
as in Ref. [7]. Thus, the EOS is almost continuous, but the
sound velocity is not continuous at the transition density. In
this paper, I focus on α in the range of 1/3 ! α ! 1. Then, I
determine the dependence of the maximum mass on η and α.

III. POSSIBLE MAXIMUM MASS

The spherically symmetric neutron star models are con-
structed by integrating the Tolman-Oppenheimer-Volkoff
equation together with the appropriate EOS. As an example,
in Fig. 1, I show the relation between the stellar mass and the
radius for the cases of α = 1/3, 0.6, and 1 with η = 50.6, 74.7,
and 107.4, where open marks denote the maximum masses
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where w0 and K0 are the saturation energy and incompressibil-
ity at the saturation density, n0, of symmetric nuclear matter,
while S0 and L are associated with the density-dependent
nuclear symmetry energy. w0, n0, and S0, which are absolute
values at the saturation point, are relatively constrained well via
terrestrial nuclear experiments, owing to the nuclear saturation.
Meanwhile, because K0 and L change rapidly at the saturation
point, one has to obtain experimental data in a wide range of
densities around the saturation point. Thus, it is more difficult
to fix the values of K0 and L via the terrestrial experiments. For
this reason, I focus on K0 and L as parameters characterizing
the EOS.

In practice, to systematically analyze the dependence of
neutron star properties on the saturation parameters K0 and
L, I adopt the phenomenological EOS proposed by Oyamatsu
and Iida [15,16]. This EOS is constructed in such a way that
the energy of uniform nuclear matter reproduces to the form as
in Eq. (1) in the limit of nb → n0 and α → 0 for various values
of y ≡ −K0S0/(3n0L) and K0. For given K0 and y, the other
saturation parameters n0, w0, and S0 are determined to fit the
empirical data for masses and radii of stable nuclei [15,16].
Hereafter, I denote this phenomenological EOS as OI-EOS.
In particular, I focus on the parameters K0, L, and y in
the ranges of 180 ! K0 ! 360 MeV, 0 < L < 160 MeV, and
y < −200 MeV fm3, respectively, which can reproduce the
mass and radius data for stable nuclei well and can effectively
cover even extreme cases [15]. The concrete parameter sets
adopted in this paper are shown in Table I, where η is an
auxiliary parameter defined as η = (K0L

2)1/3 [8]. I remark that
the low-mass neutron star models where the central density is
up to ρc = 2ρ0 can be described well with the parameter η
independently of the nuclear theoretical models [8,9].

On the other hand, several EOSs have been suggested for
the density region higher than ∼2ρ0, which are based on the
different nuclear theories, interactions, and components. The

theoretical constraints on EOSs are only that the sound speed
should be less than the speed of light (causality) and that
the sound speed should be more than zero (thermodynamics
stability). So, the stiffest EOS satisfying the theoretical
constraints can be expressed in the density region of ρ > ρt ,
such as

p = ρ − ρt + pt , (2)

where ρt is a transition density and pt is the pressure
determined at ρ = ρt with the EOS for lower-density regions.
Adopting this type of EOS for high-density regions and
connecting to the Harrison-Wheeler EOS for lower density at
ρt = 4.6 × 1014 g/cm3, the maximum mass of a neutron star
is expected to be Mmax ≃ 3.2M⊙ [5,18]. However, because
the stellar properties in the density region of ρ " 2ρ0 strongly
depend on η [8,9], the maximum mass of a neutron star could
also depend on η even if one fixes the transition density ρt .

In addition, it has been conjectured that the sound velocity
inside the star should be smaller than the speed of light in
vacuum divided by

√
3 [7]. With this conjecture, the stiffest

EOS for higher-density regions can be expressed as p = (ρ −
ρt )/3 + pt . Because this EOS becomes softer than the EOS
given by Eq. (2), the possible maximum mass becomes smaller.
In practice, the neutron star mass was discussed with this
conjecture for ρt = 2ρ0, where the possible maximum mass
is ∼2M⊙ [7]. So, if a neutron star more massive than ∼2M⊙
were to be discovered, this conjecture may not be good. In fact,
a candidate for a massive neutron star has been discovered in a
neutron star and white dwarf binary system, where the mass of
the neutron star is estimated as M = (2.74 ± 0.21)M⊙ [17].

In one way or another, the possible maximum sound
velocity inside the star, which is associated with the stiffness
of the EOS, must affect the determination of the maximum
mass of neutron stars. Thus, to examine the dependence of
the possible maximum sound velocity inside the star (or the
stiffness of the EOS) on the maximum mass of a neutron star,
I consider a general formula for the EOS given by

p = α(ρ − ρt ) + pt , (3)

where α is a parameter associated with the possible maximum
sound velocity inside the star, i.e., vmax

s =
√

α [18]. For this
examination, I adopt the OI-EOS for lower-density regions
up to ρt = 2ρ0, i.e., pt is the pressure determined with the
OI-EOS at the transition density ρt , and I adopt the EOS given
by Eq. (3) for ρ > 2ρ0. I remark that I simply connect the EOS
for lower- and higher-density regions at the transition density
as in Ref. [7]. Thus, the EOS is almost continuous, but the
sound velocity is not continuous at the transition density. In
this paper, I focus on α in the range of 1/3 ! α ! 1. Then, I
determine the dependence of the maximum mass on η and α.

III. POSSIBLE MAXIMUM MASS

The spherically symmetric neutron star models are con-
structed by integrating the Tolman-Oppenheimer-Volkoff
equation together with the appropriate EOS. As an example,
in Fig. 1, I show the relation between the stellar mass and the
radius for the cases of α = 1/3, 0.6, and 1 with η = 50.6, 74.7,
and 107.4, where open marks denote the maximum masses
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nuclear symmetry energy. w0, n0, and S0, which are absolute
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L, I adopt the phenomenological EOS proposed by Oyamatsu
and Iida [15,16]. This EOS is constructed in such a way that
the energy of uniform nuclear matter reproduces to the form as
in Eq. (1) in the limit of nb → n0 and α → 0 for various values
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adopted in this paper are shown in Table I, where η is an
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up to ρc = 2ρ0 can be described well with the parameter η
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the density region higher than ∼2ρ0, which are based on the
different nuclear theories, interactions, and components. The

theoretical constraints on EOSs are only that the sound speed
should be less than the speed of light (causality) and that
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determined at ρ = ρt with the EOS for lower-density regions.
Adopting this type of EOS for high-density regions and
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is expected to be Mmax ≃ 3.2M⊙ [5,18]. However, because
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also depend on η even if one fixes the transition density ρt .
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inside the star should be smaller than the speed of light in
vacuum divided by

√
3 [7]. With this conjecture, the stiffest
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ρt )/3 + pt . Because this EOS becomes softer than the EOS
given by Eq. (2), the possible maximum mass becomes smaller.
In practice, the neutron star mass was discussed with this
conjecture for ρt = 2ρ0, where the possible maximum mass
is ∼2M⊙ [7]. So, if a neutron star more massive than ∼2M⊙
were to be discovered, this conjecture may not be good. In fact,
a candidate for a massive neutron star has been discovered in a
neutron star and white dwarf binary system, where the mass of
the neutron star is estimated as M = (2.74 ± 0.21)M⊙ [17].

In one way or another, the possible maximum sound
velocity inside the star, which is associated with the stiffness
of the EOS, must affect the determination of the maximum
mass of neutron stars. Thus, to examine the dependence of
the possible maximum sound velocity inside the star (or the
stiffness of the EOS) on the maximum mass of a neutron star,
I consider a general formula for the EOS given by

p = α(ρ − ρt ) + pt , (3)

where α is a parameter associated with the possible maximum
sound velocity inside the star, i.e., vmax

s =
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α [18]. For this
examination, I adopt the OI-EOS for lower-density regions
up to ρt = 2ρ0, i.e., pt is the pressure determined with the
OI-EOS at the transition density ρt , and I adopt the EOS given
by Eq. (3) for ρ > 2ρ0. I remark that I simply connect the EOS
for lower- and higher-density regions at the transition density
as in Ref. [7]. Thus, the EOS is almost continuous, but the
sound velocity is not continuous at the transition density. In
this paper, I focus on α in the range of 1/3 ! α ! 1. Then, I
determine the dependence of the maximum mass on η and α.

III. POSSIBLE MAXIMUM MASS

The spherically symmetric neutron star models are con-
structed by integrating the Tolman-Oppenheimer-Volkoff
equation together with the appropriate EOS. As an example,
in Fig. 1, I show the relation between the stellar mass and the
radius for the cases of α = 1/3, 0.6, and 1 with η = 50.6, 74.7,
and 107.4, where open marks denote the maximum masses
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FIG. 1. Mass and radius relation for various EOSs for lower-density regions with η = 50.6 (dashed line), 74.7 (dotted line), and 107.4
(solid line). The left, middle, and right panels correspond to different sound velocities for higher-density regions, i.e., α = 1/3, 0.6, and 1,
respectively. The open marks correspond to the stellar models with maximum mass for various EOS models, while the solid marks correspond
to the stellar models with local maximum radii. For reference, the stellar models constructed with the central density ρc = 2ρ0 are denoted by
the double circles.

for various EOS models. From this figure, I find that the
maximum mass strongly depends on the possible maximum
sound velocity inside the star, while the dependence on η is
relatively weak. Additionally, the solid marks in the figure
denote the local maximum of the stellar radius for various
EOS models, which tells us that the local maximum radius
becomes larger with α.

To see the dependence of the maximum mass on η, in Fig. 2
I plot the maximum mass predicted from the various values of
η for the cases of α = 1/3, 0.6, and 1. From this figure, one
can observe that the maximum mass with a fixed value of α is
well fitted as a linear function of η, such as

Mmax

M⊙
= a1 + a2

(
η

1 MeV

)
, (4)

where a1 and a2 are coefficients in the linear fitting, depending
on the value of α. In Fig. 2, the linear fittings given as Eq. (4)
for α = 1/3, 0.6, and 1 are shown with the solid, dashed, and
dotted lines, respectively.

FIG. 2. The expected maximum masses for various EOS models
are shown with different marks, while the solid, dashed, and dotted
lines, respectively, denote the fitting formulas given by Eq. (4) for
α = 1/3, 0.6, and 1. In the legend, I show the values of the saturation
parameters for the adopted EOS, such as (−y,K0). The region
between the horizontal dot-dashed lines denotes the mass observation
of PSR J1614–2230 [3], while the horizontal shaded region denotes
the mass observation of PSR J0348+0432 [4]. The stippled region
denotes a plausible range for η determined from the current terrestrial
nuclear experiments.

With respect to the value of η, by adopting fiducial values
of 30 ! L ! 80 MeV [11] and K0 = 230 ± 40 MeV [12],
one can get a plausible range for η as 55.5 ! η ! 120 MeV.
This plausible range of η is shown in Fig. 2 as the stippled
region, while the observations of neutron star masses, i.e.,
M = (1.97 ± 0.04)M⊙ [3] and M = (2.01 ± 0.04)M⊙ [4], are
also shown in the same figure. To explain the observations
of neutron star masses, the case with α = 1/3, which comes
from the conjecture of Ref. [7], seems to be marginal with the
plausible range of η. In practice, to explain the lower limit of a
neutron star mass of PSR J0348+0432, i.e., M = 1.97M⊙, η
should be larger than ∼100 MeV, which leads to the constraint
of L " 66 MeV with adopting the canonical value of K0 =
230 MeV.

In a way similar to the discussion about the maximum
mass, I additionally find that the radius for a neutron star with
maximum mass with a fixed α can be well described as a linear
function of η as shown in Fig. 3. Thus, I can get a linear fit,
such as

R

1 km
= b1 + b2

(
η

1 MeV

)
, (5)

FIG. 3. The expected radii for the stellar models with maximum
mass constructed with various EOS models are shown with different
marks, while the solid, dashed, and dotted lines, respectively, denote
the fitting formula given by Eq. (5) for α = 1/3, 0.6, and 1. In the
legend, I show the values of the saturation parameters for the adopted
EOS, such as (−y,K0). The stippled region denotes a plausible range
for η determined from the current terrestrial nuclear experiments.
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to the stellar models with local maximum radii. For reference, the stellar models constructed with the central density ρc = 2ρ0 are denoted by
the double circles.

for various EOS models. From this figure, I find that the
maximum mass strongly depends on the possible maximum
sound velocity inside the star, while the dependence on η is
relatively weak. Additionally, the solid marks in the figure
denote the local maximum of the stellar radius for various
EOS models, which tells us that the local maximum radius
becomes larger with α.

To see the dependence of the maximum mass on η, in Fig. 2
I plot the maximum mass predicted from the various values of
η for the cases of α = 1/3, 0.6, and 1. From this figure, one
can observe that the maximum mass with a fixed value of α is
well fitted as a linear function of η, such as
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where a1 and a2 are coefficients in the linear fitting, depending
on the value of α. In Fig. 2, the linear fittings given as Eq. (4)
for α = 1/3, 0.6, and 1 are shown with the solid, dashed, and
dotted lines, respectively.
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nuclear experiments.

With respect to the value of η, by adopting fiducial values
of 30 ! L ! 80 MeV [11] and K0 = 230 ± 40 MeV [12],
one can get a plausible range for η as 55.5 ! η ! 120 MeV.
This plausible range of η is shown in Fig. 2 as the stippled
region, while the observations of neutron star masses, i.e.,
M = (1.97 ± 0.04)M⊙ [3] and M = (2.01 ± 0.04)M⊙ [4], are
also shown in the same figure. To explain the observations
of neutron star masses, the case with α = 1/3, which comes
from the conjecture of Ref. [7], seems to be marginal with the
plausible range of η. In practice, to explain the lower limit of a
neutron star mass of PSR J0348+0432, i.e., M = 1.97M⊙, η
should be larger than ∼100 MeV, which leads to the constraint
of L " 66 MeV with adopting the canonical value of K0 =
230 MeV.

In a way similar to the discussion about the maximum
mass, I additionally find that the radius for a neutron star with
maximum mass with a fixed α can be well described as a linear
function of η as shown in Fig. 3. Thus, I can get a linear fit,
such as
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R =13.02 +1.24
-1.06 km, M =1.44 +0.15

-0.14M⊙ (Miller+19)

R =12.71 +1.14

-1.19 km, M =1.34 +0.15
-0.16M⊙ (Riley+19)


of PSRJ0030+0451 adequately describe the NICER data.
Specifically, we compared our best-fit energy-resolved model
waveforms with the energy-resolved waveform data (i.e., the
pulse-phase–energy-channel data) collected by NICER, and
compared the energy-integrated (bolometric) waveforms given
by our best-fit energy-resolved waveform models with the
bolometric waveforms observed by NICER, using the values of
χ2 given by these comparisons. (In principle, we could also
compare the pulse-phase-integrated spectra given by our models
with the pulse-phase-integrated spectrum observed by NICER by
computing the relevant values of χ2, but our procedure for
modeling the observed unmodulated counts—see Section 3.4—
guarantees a nearly perfect description of the photon energy
spectrum, so this comparison would be uninformative.)

Assigning the NICER data to 32phase bins and 260energy
channels, the best-fit energy-resolved waveform model with two
oval spots gives a χ2 of 8204.68 when compared with this data set,
which consists of the number of counts in each of 32×260=
8320 phase-energy bins. As discussed in Section 3.3, the model
waveform with two oval spots has 14 primary parameters, 260
ancillary parameters related to the non-star emission, and one
additional parameter that describes its overall phase, yielding a
total of 8320-260-14-1=8045 degrees of freedom. The resulting
χ2/degrees of freedom (dof) is therefore 8204.68/8045. If this
model is correct, the probability of finding a value of χ2/dof this

large or larger is 0.104. Thus, according to the χ2 test this model
provides an acceptable description of this data set.
Again assigning the NICER data to 32phase bins and

260energy channels, the best-fit energy-resolved waveform
model with three oval spots gives a χ2 of 8188.99 when
compared with the NICER data binned in this way. This model
has 19 primary parameters, yielding a total of 8040 degrees of
freedom. The resulting χ2/dof is therefore 8188.99/8040. If this
model is correct, the probability of finding a χ2/dof this large or
larger by chance is 0.120, so the fit of this model to this data set is
also acceptable, according to the χ2 test. In Figure 9, we show the
value of χ in each of the 8320 phase-energy bins, for this fit. No
patterns in the values of χ are evident as a function of phase or
energy, which is what one would expect for a good fit.
When the bolometric waveforms predicted by the models with

two oval spots and three oval spots that best fit the NICER phase-
channel data with 32 phases are compared with the 32-phase
bolometric waveform constructed using the NICER data, the
values of χ2/dof are considerably larger. When the bolometric
waveform given by the model with two oval spots is compared
with the 32-phase bolometric waveform constructed using the
NICER data, the value of χ2 is 40.6. There are 32-14-1-1=16
dof in this 32-phase bolometric data. The χ2/dof is therefore
40.6/16, which has a probability 6.3×10−4 of occurring by
chance. This probability is low enough that it indicates that this

Table 8
Fits to NICER Data with Three Oval Spots

Parameter Median −1σ +1σ −2σ +2σ Best Fit

Re(km) 13.019 11.959 14.255 10.938 15.500 13.466

GM/(c2Re) 0.163 0.154 0.171 0.144 0.179 0.156

M (Me) 1.443 1.299 1.594 1.164 1.745 1.423

θc1 (rad) 2.270 2.179 2.357 2.093 2.442 2.330

Δθ1 (rad) 0.036 0.031 0.040 0.028 0.045 0.032

f1 5.352 4.364 6.502 3.568 7.664 5.335

kTeff,1 (keV) 0.117 0.114 0.120 0.110 0.122 0.113

θc2 (rad) 2.417 2.341 2.486 2.252 2.540 2.446

Δθ2 (rad) 0.033 0.029 0.038 0.025 0.043 0.029

f2 15.769 13.017 18.498 10.923 19.79 16.588

kTeff,2 (keV) 0.115 0.112 0.118 0.107 0.121 0.105

Δf2 (cycles) 0.460 0.458 0.463 0.456 0.466 0.463

θc3(rad) 2.988 2.865 3.063 2.691 3.094 3.056

Δθ3 (rad) 0.056 0.021 0.103 0.004 0.168 0.087

f3 1.215 0.493 2.096 0.161 3.511 1.253

kTeff,3 (keV) 0.239 0.143 0.354 0.029 0.470 0.209

Δf3 (cycles) 0.420 0.378 0.534 0.071 0.932 0.427

θobs (rad) 0.878 0.769 0.973 0.675 1.051 1.012

NH (1020 cm−2) 0.244 0.082 0.441 0.011 0.723 0.187

D (kpc) 0.327 0.307 0.347 0.290 0.365 0.317

Note. 1D credible regions, and best fit, obtained by fitting the model with three possibly different uniform oval spots to channels 40–299 of the NICER data on
PSRJ0030+0451.
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XMM-Newton (Bogdanov & Grindlay 2009). Although the
XMM-Newton EPICMOS1/2 observations have substantially
fewer source counts, they have a much lower background in the
point-source spatial extraction region compared to the non-
imaging NICER data, which means that to first order all of the
counts detected by XMM-Newton come from the star rather
than from unassociated sources. If the phase-integrated data
from XMM-Newton are fit using a two-temperature non-
magnetic hydrogen atmosphere model (as in Bogdanov &
Grindlay 2009) and the predictions of the model are folded
through the NICER response matrix, then we obtain an estimate
for the total number of NICER counts from the star and the
spectral shape that we expect to see in NICER. This predicted
spectral flux can be compared with the total spectral flux
expected from all the hot spots in our best-fit models of the
pulse waveform emission. Figure 12 shows this comparison for
our models with two oval spots and three oval spots. In both
cases, the combined spectral flux expected from the hot spots at
low photon energies falls short of the spectral flux predicted by
the XMM-Newton observations.

A first thought would be that the missing emission might be
unpulsed thermal emission from a substantial fraction of the

stellar surface. There are, however, several serious difficulties
with such an interpretation. First, the emission would have to be
almost exactly axisymmetric around the stellar rotation axis in
order to avoid generating detectable pulsed emission. This forces
one to consider emission patterns that are highly tuned: filled
circular emitting regions around one or both rotation poles,
annular emitting regions centered around one or both rotation
axes, or some combination of these would be required to avoid
producing detectable flux modulation. Second, if the emission is
thermal, the total area of the axisymmetric emitting region(s)
would have to be a very small fraction of the stellar surface.
We illustrate these difficulties by an example. In order to make

up the observed deficit in the flux at low energies and not produce
detectable modulation, a circular spot centered on the north
rotational pole (the pole nearer the observer), would have to have
an angular radius of just 0.075 rad, assuming thermal emission at
the best-fit effective temperature of kTeff≈0.075 keV. Such a
spot would also have to be very nearly circular and centered on
the north rotational pole: a deviation of more than ∼0.01 rad
would cause a flux modulation that would be inconsistent with the
observed waveform. Because of its smaller projected area, a
circular spot centered on the south rotational pole would have to

Figure 11. Locations, shapes, and sizes of the hot spots in the best-fit waveform models with two oval spots (panels (a) and (b)) (see Table 7) and three oval spots
(panels (c) and (d)) (see Table 8). Panels (a) and (c) show equal-area projections, centered on the rotational equator. Panels (b) and (d) are views from the south pole.
The cooler main spot is indicated by yellow, the hotter main spot is indicated by red, and in the three-spot model, the hottest spot is indicated by blue. For both fits, the
horizontal line shows the inferred colatitude of the observer. Clearly, both spots in the model with two oval spots and the two main spots in the model with three oval
spots are very similar in location, size, and shape; the third spot in the three-spot model has a very small area and makes only a minor contribution to the waveform.
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The results are shown in Figure 10. The minimum value of the
bolometric χ2/dof is 59.6/43, which has a probability of
0.0473, indicating that this 64-phase model also provides an
acceptable description of the 64-phase bolometric waveform
data. When the predictions of this best-fit model for the energy-
resolved waveform with 64 phase bins are compared with the
64-bin energy-resolved NICER waveform data, the resulting
χ2/dof is 16347.5/16360, which has a probability of 0.526,
again much higher than the probability that we found when we
divided the data into only 32 phase bins, and indicating that this

energy-resolved waveform model provides an acceptable
description of the energy-resolved NICER waveform data with
64 phase bins.
These results indicate that our best-fit models with two and

three oval spots provide good descriptions of the NICER
waveform data at high phase resolutions, and that the radius
and mass estimates inferred from them are therefore credible.
Why the bolometric waveforms given by the models that best
fit the 32- and 64-phase energy-resolved NICER waveform data
differ from the 32-phase bolometric waveforms constructed

Figure 7. Comparison of the joint posterior probability density distributions for M and Re given by the best fits of the waveform model with two (panel (a)) and three
(panel (b)) uniform-temperature oval spots. The inner contour shown in each panel contains 68.3% of the posterior probability, whereas the outer contour contains
95.4%. The color indicates the credibility in standard deviations of each point in the posterior probability density distribution. Again, the agreement of the distributions
given by the two models is excellent.

Figure 8. Comparison of the bolometric waveforms given by the best-fit waveform models with two (panel (a)) and three (panel (b)) oval spots. The solid curves show
the full waveforms; the dashed curves show the contributions to the full waveform made by the individual hot spots. The components that generate the full waveforms
are very similar for the two models.
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•  Neutron stars (NSs) & equation of state (EOS)
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watermelon


•  how to know the best time to eat a watermelon ?


–  inside can not be checked before cutting


•  “empirical rule”


–  to check the best time, knock a watermelon


•  high frequency “KIN-KIN” ; too young


•  “BAN-BAN” ; best time !


•  low frequency “BON-BON” ; too old 


–  need many years to get this ability


•  one could see the interior with specific sound from object.


–  asteroseismology !!
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Seismology, Helioseismology
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˝NAOJ


フロンティア地球観測 予測外の発見を求めて

図3　中国東北部の地下の構造

NECESSArrayで観測したP波のデータを解析し
た結果。深さ600kmに見える地震波の高速度領
域（青）は、スラブに対応する。高速度領域が途切
れて低速度領域（赤）があることから、スラブに穴
が開いているのではないかと考えられている。スラ
ブの穴の上には、長白山という火山がある。アメリ
カチームがS波のデータを解析した結果でも、同じ
ような構造が見えている。

川勝 均　海半球観測研究センター 教授

P波速度

遅い 速い

長白山

（取材・執筆：鈴木志乃）

みにはまって動けなくなったり、収録計を入れ
た容器が爆発したりといったトラブルはありま
したが、大きな事故はなく2年間の観測を終
了し、撤収することができました」

スラブに穴が開いている？
　NECESSArrayの観測データは、観測終
了から2年間、プロジェクトメンバーが独占し
て使うことができる。観測データの解析からど
のようなことが見えてきたのだろうか。
　1回目の保守点検で回収した観測データ
には、2009年9月30日に南アメリカのボリ
ビアで起きた地震が記録されていた。「とて
も良質なデータが取れていました」と川勝教
授。中国東北部は、人口密度が低いため人
工的なノイズが少ないこと、内陸なので海の
波のノイズが弱いことなどによる。「この良質
なデータが2年分集まれば、新しいことが見え
てくるに違いないと期待が膨らみました」。そ
の期待は裏切られなかった。「中国大陸の下
のスラブは、これまで考えられていたのとは違
う、驚くべき姿をしていることが分かりました」
　NECESSArrayの観測データを解析する
と、深さ600kmあたりでは東側に地震波の
高速度領域（青）が見える（図3）。これは、ス
ラブである。スラブは周囲より冷たいため、地
震波の速度が速くなる。スラブの存在はこれ
まで分かっていた通りだった。問題はその西
側だ。「高速度領域が途切れ、その西側に低
速度領域（赤）があったのです。それは、滞留
しているスラブが途切れ、暖かいあるいは軟
らかい物質があることを意味します。このデー
タをどのように解釈すべきか議論の途中で、
決着はついていませんが、スラブに穴が開い
ている可能性があります」（表紙、想像図）
　川勝教授は続ける。「さらに興味深いの
は、そのスラブの穴の上に長白山があること
です。スラブの穴と長白山の形成には何らか
の関係があると考えるのが自然でしょう」。ス
ラブの下には高温のマントルがあり、それが
海洋プレートの穴を通って上昇し火山をつく
ったのではないか、とも考えられている。
　「本当にスラブに穴が開いているのか。長
白山の下にある低速度領域の正体は何か。
それらについて明らかにしていく必要がありま
す。私は、スラブに穴が開いているのではな
く、長白山の下から西側にはスラブがないか

もしれないと考えています」と川勝教授。

マントルの底や内核を描き出す
　三つ目の目的である地球深部についても
新たな知見が得られた。「南太平洋の下にあ
るプルームのしっぽを捉えることができました」
と川勝教授。これまでの地震波トモグラフィ
ー観測によって、アフリカと南太平洋の下に
マントルの上昇流、プルームがあることが分
かっている。プルームのしっぽ、つまりマントル
の底にあるプルームの発生領域を探る研究
は、アフリカについては進んでいるが、南太平
洋については遅れていた。NECESSArray
の観測によって、南太平洋の下のマントルの
底が詳しく見えたのだ。
　南太平洋の下のマントルの底には、地震
波の低速度領域が薄く広がっていた。しか
も、地震波速度の変化は急激で、周囲との
境界がくっきりしている。「暖かい物質がある
とも考えられます。しかし、熱は周囲にも伝わ
っていくので、地震波速度も緩やかに変化す
るはずです。速度が急激に変化しているとい
うことは、組成などが異なる物質があることを
意味するのではないかと考えています」
　地球の中心にある核は、固体の内核と、
その外側にある液体の外核に分かれてい
る。これまでの観測から、内核の構造は均
一ではなく、東半球と西半球でそれぞれ特
徴的な構造を持つことが示唆されている。
NECESSArrayでは、西半球の広い領域で
の特徴を抽出し東半球との違いをはっきり捉
えることに成功。内核の成長を理解する手
掛かりになる大きな成果である。
　NECESSArrayのデータは2014年2月
に公開された。「世界中の研究者が独自の
視点で解析することで、中国大陸の下の構
造や、私たちが思い付かなかったようなマント
ル・核の研究が進むことを期待しています」

伊豆大島や瀬戸内海に
大規模観測網を
　川勝教授は、「回収してきた40台の地震
計を有効に使わないともったいない」と言う。
「例えば、伊豆大島で集中観測をすれば、火
山活動のメカニズム解明につながるでしょう。
瀬戸内海にも観測網をつくりたいですね」
　南海トラフではフィリピン海プレートがユー

ラシアプレートの下に沈み込み、巨大地震の
震源域となっている。そこでどのような地震が
発生するかを理解するには、フィリピン海プレ
ートがどのように沈み込んでいるかを知ること
は重要だ。しかし、四国と中国地方の間の下
の様子がよく分かっていない。「瀬戸内海が
あるため、観測が手薄なのです。瀬戸内海の
島々に観測点をつくれば、沈み込むフィリピン
海プレートの姿が詳しく見えるはずです」
　「周到に準備して観測を行っても、得られ
たデータを解析すると、思いがけないものが
いつも見えてきます。これだから観測は面白
い。地球はまだ分からないことばかり」と川勝
教授は言う。「良い観測研究には、予測をす
るための“理”と、予測を外すための“勘”が必
要。これからも新しい場所で新しい観測をし
て、新しい地球の姿を描き出したいですね」

˝東大地震研究所


•  Seismic waves tell us 
information inside the 
Earth (seismology)


•  The interior of the 
Sun can be probed 
through the wave 
pattern on the 
surface 
(helioseismology)
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non-radial Oscillations  
in neutron stars


•  axial type oscillations

–  no stellar deformation, no density variation


•  t-modes (torsional oscillations) : oscillations due to the elasticity 


•  w-modes (spacetime) : oscillations of specetime itself ~ M/R


•  polar type oscillations

–  with density variation & stellar deformation 


–  important for considering the GWs emission


•  f-mode (fundamental) ~ (M/R3)1/2


•  p-modes (pressure) : sound speed crossing ~ (M/R3)1/2


•  g-modes (gravity) : thermal/composition gradients ~ B-V frequency


•  s-modes (shear) : oscillations due to the elasticity 


•  Alfven modes


•  inertial modes (effect of rotation)


•  w-modes (spactime) : oscillations of specetime itself ~ M/R
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GW asteroseismology in NSs


Andersson & Kokkotas (1998) 

•  via the observations of GW frequencies, one might be able to see 
the properties of NSs
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determination of (M, R)




QPOs in SGRs

•  Quasi-periodic oscillations (QPOs) in afterglow of giant flares from soft-

gamma repeaters (SGRs)


–  SGR 0526-66 (5th/3/1979) : 43 Hz


–  SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz


–  SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz


–  additional QPO in SGR 1806-20 is found : 57Hz (Huppenkothen + 2014)


Strohmayer & Watts (2006)


•  Crustal torsional oscillation ?


•  Magnetic oscillations ?


(Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06)
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advantage for crustal oscillations

•  magnetic configuration inside NSs are still uncertain


•  EOSs for core region are unfixed yet


•  to avoid such uncertainties, we focus on the crustal torsional 
oscillations without effects of magnetic field


–  fluid core: zero shear modulus ---> no shear oscillations


–  torsional oscillations localize only in crust region


•  magnetic effect  
on torsional oscillations
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torsional oscillations 1

•  axial parity oscillations


–  incompressible


–  no density perturbations (less associated with GWs)


•  in Newtonian case





–  μ: shear modulus


–  frequencies ∝ shear velocity 


–  overtones depend on crust thickness


•  one can consider torsional oscillations  
independently of core EOS


•  effect of magnetic field


–  frequencies can become larger

(Sotani+07, Gabler+12,13)


(Hansen & Cioff  1980)


vs = µ / ρ
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torsional oscillations 2
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density


crust
core
 (Strohmayer+ 91) 
spherical


linear response : fluid

(Landau)


slab-like


à two independent oscillations

   (i) spherical + cylindrical

   (ii) cylindrical-hole + bubble


ni : ion number density

Z : charge of nuclei

a : Wigner-Seitz radius




torsional oscillations in Sph. nuclei

•  EOS for core region is still uncertain.


•  To prepare the crust region, we integrate from r=R.


– M, R : parameters for stellar properties


– L, K0 : parameters for curst EOS (Oyamatsu & Iida 03, 07)


•  In crust region, torsional oscillations are calculated.


– frequency of fundamental oscillation ∝ vs (vs
2 ~ μ/H )
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1.4M⊙, 12km


Ø  independent of the value of K0

Ø  similar to the cases for R=10-14 

km,  M/M⊙=1.4-1.8, and various l.

Ø we focus on the l-dependence on 0tl




comparison to SGR 1806-20

•  for R = 12 km and M = 1.4M⊙


•  discovery of new QPO from SGR1806-20, which is 57Hz
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HS+	16	
with l=2, 3, 6, 10	

1)  l	=	3,	4,	5,	9,	15	
all	QPOs	can	be	identified	

2)  l	=	2,	3,	6,	10	
except	for	26	Hz,	QPOs	can	
be	identified	



constraint on L via QPO frequencies
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M/M⊙
L 
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]
➡  58.0 ⩽ L ⩽ 85.3 MeV 


1)  all QPOs come from crustal 
torsional oscillations (HS+13a)


2)  QPOs except for 26Hz come 
from crustal torsional oscillations


     (HS+13b)


cf) L = 58.9 ± 16 MeV  ??
 one needs to consider another 
oscillation mechanism for 26 Hz


10km	

12km	

14km	



effect of pasta structure
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HS+ 18


density


crust
core


Crustal torsional oscillations with pasta structure 5

0.92 0.93 0.94 0.9510–10

10–9

r/R

! 
(k

m
-2

)

K0 = 230 MeV7.6

42.6

73.4

Figure 2. Effective shear modulus in the phase of spherical nuclei (µsp) and in the phase of cylindrical nuclei (µcy) is plotted by the
solid and dashed lines, respectively, for the stellar model with 1.4M⊙ and 12 km. The each line corresponds to the case of L = 7.6, 42.6,
and 73.4 MeV from top down, where the value of K0 is fixed to be 230 MeV.

µcy =
2
3
C. (7)

In this paper, we adopt this type of shear modulus in the phase of cylindrical nuclei for the calculation of torsional oscillations.

To estimate the shear modulus µcy at each density, we adopt the value of ECoul at each density obtained when the OI-EOS

is constructed with the Thomas-Fermi model. We remark that ECoul with the liquid drop model is given by

ECoul =
π
2

(ρpRp)2w2

[
ln

(
1

w2

)
− 1 + w2

]
, (8)

where ρp is the charge density inside the nuclei, i.e., ρp ≡ enp with the proton number density inside the nuclei, np, while w2 is

the volume fraction defined as w2 ≡ (Rp/Rc)
2 with the radius of cylindrical nuclei Rp and the unit cell radius Rc (Ravenhall,

Pethick & Wilson 1995).

Additionally, the phase of slab-like nuclei may exist inside the phase of cylindrical phase, depending on the EOS param-

eters. The elastic properties in the phase of slab-like nuclei have been also discussed in de Gennes & Prost (1993); Pethick

& Potekhin (1998), where they showed that the energy-change due to the deformation becomes the higher order effect of the

displacement. That is, the phase of slab-like nuclei behaves as a fluid at least in the linear analysis for the torsional motion.

So, even if the additional pasta phases might exist inside the phase of slab-like nuclei, the torsional oscillations are confined

in the region of spherical and cylindrical nuclei, which can be considered independently of the torsional oscillations in the

region of cylindrical-hole and spherical-hole nuclei (Sotani, Iida & Oyamatsu 2017a).

In such a reason, we can focus on the oscillations only in the region of spherical and cylindrical nuclei, where the

corresponding effective shear modulus is given by Eqs. (4) and (7), respectively. In Fig. 2, we show the effective shear modulus

in the region of spherical and cylindrical nuclei for the stellar model with 1.4M⊙ and 12 km, where the solid and dotted

lines correspond to µsp and µcy. In the figure, the lines from top down correspond to the results for L = 7.6, 42.6, and 73.4

MeV, where the value of K0 is fixed to be 230 MeV. We remark that the shear modulus in the lower density region, which

corresponds to the region from the right edge of horizontal axis up to the stellar surface, agrees with each other. From this

figure, one can observe that the effective shear modulus discontinuously reduces at the phase transition from spherical nuclei

to cylindrical nuclei. Due to the sudden change of the nuclear structure, the shear modulus also discontinuously changes at

the phase transition from the spherical nuclei into the cylindrical nuclei (Araki 2014).

4 TORSIONAL OSCILLATIONS AND COMPARISON WITH QPOS

In order to determine the frequencies of torsional oscillations, we consider a linear analysis on the equilibrium configuration

of neutron star crust. Since the torsional oscillations are an axial type of oscillations, we can safely adopt the relativistic

Cowing approximation, where the metric perturbations are neglected. Owing to the spherically symmetric background, the

oscillations are described with one perturbation variable, i.e., the Lagrangian displacement (Y) of matter element in the φ

direction. With this variable, the perturbation equation is derived by linearizing the relativistic equation of motion, such as

Y ′′ +

[(
4
r

+ Φ′ − Λ′
)

+
µ′

µ

]
Y ′ +

[
H̃
µ

ω2e−2Φ − (ℓ + 2)(ℓ − 1)

r2

]
e2ΛY = 0, (9)

where H̃ is the effective enthalpy given in section 2, the prime denotes the differentiation relative to r, and ω denotes the

eigenfrequencies of torsional oscillations (Schumaker & Thorne 1983). We notice that ω is associated with the frequencies of

torsional oscillations, f , via ω = 2πf . Since we consider the excitation of torsional oscillations inside the phases of spherical

c⃝ 0000 RAS, MNRAS 000, 000–000

spherical 
Strohmayer+91


cylindrical

Potekhin+98


(Strohmayer+ 91) 
spherical


linear response : fluid

(Landau)


slab-like


à two independent oscillations

   (i) spherical + cylindrical

   (ii) cylindrical-hole + bubble à 26Hz?


µcy =
2
3
ECoul ×10

2.1(w2−0.3)

cylindrical


ECoul : Coulomb energy per unit volume

w2 : volume fraction


(Potekhin+98)	

identification of overtone (?)






à additional information

 1t2 ∼ vs / ΔR

identification of fundamental oscillations

à constraint on L (?)




constraint on L
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Crustal torsional oscillations with pasta structure 9
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Figure 8. The suitable value of L for explaining the QPOs observed in SGR 1900+14 with the crustal torsional oscillations for various
neutron star models with Ns/Nd = 1.0.
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Figure 9. The suitable value of L for simultaneously explaining both of QPOs observed in SGR 1806−20 (except for 26 Hz) and SGR
1900+14 for the neutron star models with M = 1.4−1.8M⊙, R = 10−14 km, and Ns/Nd = 1.0. The painted region denotes the allowed
region of L, with which both of QPOs can be explained.

4.2 The 1st overtones

Next, we examine the properties of the 1st overtones of torsional oscillations, i.e., 1tℓ. The frequencies are considered to

be associated with the crust thickness, ∆R, such as 1tℓ ∝ vs/∆R (Hansen & Cioffi 1980), while ∆R depends on the EOS

parameters (Sotani, Iida & Oyamatsu 2017b). Thus, via the identification of the observed QPO with the overtone of crustal

torsional oscillations, one may be obtain the information about the EOS parameters (Sotani et al. 2012).

In order to find a parameter constructed with K0 and L, with which the frequencies of the 1st overtone are expressed

well, we consider the combination such as (Ki
0L

j)1/(i+j) with integer numbers i and j. Then, we find the suitable combination,

i.e.,

ς = (K4
0L5)1/9. (13)

We remark that the combination of K0 and L in ς is different from that in η defined by η = (K0L
2)1/3, which is good
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1900+1410 km

12 km

14 km

Figure 10. Same as Fig. 9, but with Ns/Nd = 0.
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-  fundamental oscillations weakly 
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Figure 3. For the various sets of EOS parameters, the fundamental frequencies of the ℓ = 2 torsional oscillations, 0t2, are plotted as a
function of L for the stellar models with M = 1.4M⊙ and R = 12 km. The left and right panels correspond to the results with Ns/Nd = 0
and 1, respectively. In the both panels, the thick solid line denotes the fitting formula given by Eq. (11), while the dashed line denotes
the relation between 0t2 and L without the effect of the phase of cylindrical nuclei.

and cylindrical nuclei in this paper, we have to impose the boundary conditions at the stellar surface, where the torque should

be zero, and the basis of the phase of cylindrical nuclei, where the traction force should be zero. Both conditions can be

expressed as Y ′ = 0 (Schumaker & Thorne 1983; Sotani, Kokkotas & Stergioulas 2007). Additionally, we have to impose

junction condition at the phase transition from the spherical nuclei to the cylindrical nuclei, which should be the continuous

traction condition, i.e.,

µspY ′ = µcyY ′. (10)

Furthermore, since we can choose an arbitrary amplitude of torsional oscillations in Eq. (9), we adopt that the amplitude at

the stellar surface should be one. Then, the problem to solve becomes an eigenvalue problem with respect to ω. Hereafter, we

use the notation, ntℓ, for expressing the torsional frequencies with the angular index ℓ and the number of radial nodes in the

eigenfunction n.

4.1 Fundamental oscillations

First, we examine the fundamental frequencies of torsional oscillations, i.e., 0tℓ. The similar analysis for the fundamental

crustal torsional oscillations inside the phase of spherical nuclei has been already done (Sotani et al. 2012, 2013a,b; Sotani

2014; Sotani, Iida & Oyamatsu 2016; Sotani 2016), where we have shown that the fundamental frequencies of torsional

oscillations are almost independent of the value of K0. On the other hand, in this paper we calculate the ℓ = 2 fundamental

frequencies excited in the phases of spherical and cylindrical nuclei for the neutron star model with M = 1.4M⊙ and R = 12

km, using various EOS parameters shown in Table 1. The resultant frequencies are shown in Fig. 3 for Ns/Nd = 0 in the left

panel and for Ns/Nd = 1 in the right panel, where the circles, diamonds, squares, and inverted triangles correspond to the

results for K0 = 180, 230, 280, and 360 MeV. From this figure, we confirm that the ℓ = 2 fundamental frequencies excited in

the phases of spherical and cylindrical nuclei are almost independent of the value of K0, whose feature is the same as in the

fundamental torsional oscillations considered in the phase of spherical nuclei. In practice, we find that the dependence of the

ℓ = 2 fundamental frequencies on L can be expressed with the fitting formula, such as

0t2 = c(0)
2 + c(1)

2 L + c(2)
2 L2, (11)

where c(0)
2 , c(1)

2 , and c(2)
2 are arbitrary coefficients. The expectation with this fitting formula is also plotted in Fig. 3 with the

thick solid line. For reference, we also show the expectation of 0t2 considered in the phase of spherical nuclei with the dashed

line. Comparing the thick slid line with the dashed line, we find that the effect of the introduction of the phase of cylindrical

nuclei may not be so significant on the determination of the fundamental frequencies of torsional oscillations.

In addition, we confirm that the dependence of the ℓ-th order fundamental frequencies of torsional oscillations, 0tℓ, on

K0 are very little for the neutron star models with M = 1.4 − 1.8M⊙ and R = 10 − 14 km. Thus, one can generally express

0tℓ as a function of L as

0tℓ = c(0)
ℓ + c(1)

ℓ L + c(2)
ℓ L2, (12)

where c(0)
ℓ , c(1)

ℓ , and c(2)
ℓ are arbitrary coefficients depending on the stellar mass and radius.

Now, we consider to constrain the value of L by comparing the ℓ = 2 fundamental frequencies of torsional oscillations with

the lowest QPO frequency observed in giant flares. In Fig. 4, the expectation of 0t2 for the stellar models with M = 1.4−1.8M⊙

and R = 10−14 km is shown with the painted region, where the left and right panels correspond to the results for Ns/Nd = 0
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Figure 12. The 1st overtones of the ℓ = 2 (solid lines) and 10 (dashed lines) torsional oscillations are shown as a function of ς, where
the lines from top to bottom correspond to the results for the neutron star models with (M, R) = (1.4M⊙, 10 km), (1.6M⊙, 12 km), and
(1.8M⊙, 14 km), and the left and right panels denote the results for Ns/Nd = 0 and 1.

parameter for describing the low-mass neutron stars (Sotani et al. 2014). In Fig. 11, for various EOS parameter sets, the

frequencies of 1st overtone for the neutron star model with M = 1.4M⊙ and R = 12 km are shown as a function of ς, where

the circles, diamonds, squares, and inverted triangles correspond to the results for K0 = 180 230, 280, and 360 MeV, while

the left and right panels denote the results for Ns/Nd = 0 and 1. From this figure, we can derive the fitting formula of the

ℓ = 2 frequencies of the 1st overtone as a quadratic function of ς, such as

1t2 = d(0)
2 + d(1)

2 ς + d(2)
2 ς2, (14)

where d(0)
2 , d(1)

2 , and d(2)
2 are arbitrary coefficients. The expectation of frequencies with Eq. (14) is also plotted in Fig. 11 with

the thick solid line. Additionally, we can confirm that the ℓ-th frequencies of the 1st overtone for various neutrons star models

are also similarly expressed by a function of ς, i.e.,

1tℓ = d(0)
ℓ + d(1)

ℓ ς + d(2)
ℓ ς2, (15)

where d(0)
ℓ , d(1)

ℓ , and d(2)
ℓ are arbitrary coefficients depending on the stellar mass and radius.

Nevertheless, unlike the fundamental torsional oscillations, the frequencies of overtone are almost independent of ℓ (Hansen

& Cioffi 1980), as shown in Fig. 12, where the ℓ = 2 (solid line) and 10 (dashed line) frequencies of the 1st overtone expected

with Eq. (15) are shown for the stellar models with (M, R) = (1.4M⊙, 10 km), (1.6M⊙, 12 km), and (1.8M⊙, 14 km) with

Ns/Nd = 0 (left panel) and 1 (right panel). So, hereafter we focus on only the ℓ = 2 frequencies of the 1st overtone.

Simultaneously, from this figure, one can observe that the frequencies of the 1st overtone strongly depend on the neutron star

models.

Now, we consider to constrain ς by identifying the observed QPO with the 1st overtone of crustal torsional oscillations.

Although most of the QPOs observed in SGR 1806−20 and in SGR 1900+14 are lower than 160 Hz, the 626.5 and 1837 Hz

QPOs are also observed in SGR 1806−20. Such high frequencies may come from not the torsional oscillations but the polar

type oscillations of neutron stars. Even so, assuming that the 626.5 Hz QPO comes from the 1st overtone of crustal torsional

oscillations, we try to constrain the value of ς. In Fig. 13, we show the expectation of 1t2 as a function of ς for the 1.4M⊙

neutron star with Ns/Nd = 1.0 and with R = 10 (solid line), 12 (dotted line), and 14 km (dashed line) together with the 626.5
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models with Ns/Nd = 1.0.

Hz QPO observed in SGR 1806−20 (dot-dash-line). From this figure, one can find that the suitable values of ς for identifying

the 626.5 Hz QPO with the 1st overtone of crustal torsional oscillations are ς = 178.5, 149.7, and 107.1 MeV for R = 10, 12,

and 14 km, respectively. In the similar way, the suitable values of ς for identifying the 626.5 Hz QPO with the 1st overtone

of crustal torsional oscillations are shown in Fig. 14 for various neutron star models with Ns/Nd = 1.0.

Moreover, for each neutron star model, the suitable value of L for explaining the QPOs observed in SGR 1806−20 except

for 26 Hz are already fixed as shown in Fig. 6. With this constraint on L together with the constraint on ς as shown in Fig. 14,

we can get the constraint on K0 for each neutron star model via K0 = (ς9/L5)1/4, which is plotted in Fig. 15. On the other

hand, the value of K0 is constrained via the terrestrial nuclear experiments, i.e., K0 = 230 ± 40 MeV (Khan & Margueron

2013). This constraint on K0 is also shown with the painted region in the same figure. Therefore, the neutron star model, with

which the QPOs observed in SGR 1806−20 can be identified by the fundamental frequencies and the 1st overtone of crustal

torsional oscillations, would be better to be low-mass neutron star with relatively larger radius, such as M ≃ 1.4 − 1.5M⊙

for the neutron star model with R = 14 km, or maybe M ≃ 1.3 − 1.4M⊙ for the neutron star model with R = 13 km. The

similar result can also be obtained even for the case with Ns/Nd = 0 as shown in Fig. 16. If this constraint on the neutron

star model would be accepted, from Figs. 9 and 10, we may obtain the further constraint on L. That is, L should be around

61 − 70 MeV for Ns/Nd = 1.0, while L is around 58 − 68 MeV for Ns/Nd = 0. Thus, considering an uncertainty of the value

of Ns/Nd inside the phase of cylindrical nuclei, we derive the constraint on L as L ≃ 58 − 70 MeV for explaining the QPOs

observed in SGRs with the crustal torsional oscillations. We remark that, in any way, the 26 Hz QPO should be explained by

the oscillations in the phases of cylindrical-hole and spherical-hole nuclei.

5 CONCLUSION

We systematically calculate the torsional oscillations excited in the region composed of the spherical and cylindrical nuclei,

as varying the neutron star mass, radius, and the entrainment ratio of neutron superfluidity in the phase of cylindrical nuclei.

Owing to the nature that the elastic properties in the slab-like nuclei behave like fluid against the linear perturbation, we

can solely consider the torsional oscillations inside the phases of spherical and cylindrical nuclei. As a result, now we can

discuss the properties of overtones as well as the fundamental torsional oscillations. First, we can find that the fundamental
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Margueron 2013).
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Figure 16. Same as Fig. 15, but with Ns/Nd = 0.

frequencies are more or less similar to the results as in the previous our studies, where we considered the torsional oscillations

inside the phase of spherical nuclei. In practice, the fundamental frequencies can be expressed as a quadratic function of the

slope parameter of the nuclear symmetry energy L independently of the incompressibility of symmetric nuclear matter K0

for each neutron star model. By identifying the low-lying QPOs observed in SGR 1806−20 except for the 26 Hz QPO and

in SGR 1900+14, we can obtain the constraint on L as L = 54.3 − 85.0 MeV even taking into account an uncertainty of the

entrainment ratio of neutron superfluidity in the phase of cylindrical nuclei.

Meanwhile, we confirm that the 1st overtones are almost independent of the angular index ℓ for each neutron star model.

Additionally, we succeed to find the suitable combination of L and K0 for expressing the 1st overtones, which is a new

parameter defined as ς ≡ (K4
0L5)1/9 in units of MeV. In fact, the 1st overtones can be expressed as a quadratic function of ς.

Then, assuming that the 626.5 Hz QPO observed in SGR 1806−20 is identified by the 1st overtone, we consider to constrain the

value of ς. Furthermore, adopting the constraint on L obtained from the identification of the low-laying observed QPOs with

the fundamental torsional oscillations, the constraint on ς can be converted into the constraint on K0. Since the constrained

region of K0 is larger than that obtained from the terrestrial nuclear experiments, we can constrain the neutron star model for

explaining the observed QPOs by the crustal torsional oscillations. Actually, the low-mass neutron star with relatively larger

radius may be favored in this scenario. With these constraints on the neutron star models, finally we can derive the further

constraints on L, i.e., L ≃ 58− 70 MeV, even considering an uncertainty of the value of Ns/Nd inside the phase of cylindrical

nuclei. In any way, in our scenario, the 26 Hz QPO should be explained by additional oscillation mechanism. Maybe, this

additional mechanism is the torsional oscillations excited inside the phases composed of cylindrical-hole and spherical-hole

nuclei.

This work was supported in part by Grant-in-Aid for Scientific Research (C) through Grant No. 17K05458 provided by

Japan Society for the Promotion of Science (JSPS).
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4.2 The 1st overtones

Next, we examine the properties of the 1st overtones of torsional oscillations, i.e., 1tℓ. The frequencies are considered to

be associated with the crust thickness, ∆R, such as 1tℓ ∝ vs/∆R (Hansen & Cioffi 1980), while ∆R depends on the EOS

parameters (Sotani, Iida & Oyamatsu 2017b). Thus, via the identification of the observed QPO with the overtone of crustal

torsional oscillations, one may be obtain the information about the EOS parameters (Sotani et al. 2012).

In order to find a parameter constructed with K0 and L, with which the frequencies of the 1st overtone are expressed

well, we consider the combination such as (Ki
0L

j)1/(i+j) with integer numbers i and j. Then, we find the suitable combination,

i.e.,

ς = (K4
0L5)1/9. (13)

We remark that the combination of K0 and L in ς is different from that in η defined by η = (K0L
2)1/3, which is good
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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
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L ≈ 58.9 ± 16 MeV


Page 8 of 75 Eur. Phys. J. A (2019) 55: 117

Fig. 5. (Color online) Central values of Esym(ρ0) and L(ρ0) from 28 model analyses of terrestrial nuclear experiments and
astrophysical observations. Modified from similar plots in ref. [75] by updating the result of Sotani et al. in their analyses of the
quasi-periodic oscillations of neutron stars [76,77].

Fig. 6. (Color online) The radial part of the tensor force due
to pion and ρ meson exchange at densities of ρ = 0, ρ0, 2ρ0,
and 3ρ0 with the in-medium ρ mass of m⋆

ρ/mρ = 1 − 0.2ρ/ρ0.
Taken from ref. [78].

3.2 The role of the tensor force in the isosinglet
nucleon-nucleon interaction channel

The second-order tensor contribution to nuclear symmetry
energy has been studied for a long time, see, e.g., refs. [92–
95]. It is approximately

⟨Vsym⟩ =
12
eeff

⟨V 2
t (r)⟩, (15)

where eeff ≈ 200MeV and Vt(r) is the radial part of the
tensor force [95]. In the one-boson-exchange picture, the
tensor interaction results from exchanges of the isovector
π and ρ mesons. The tensor part of the one-pion exchange
potential can be written as [96–98]

Vtπ = − f2
π

4π
mπ(τ1 · τ2)S12

·
[

1
(mπr)3

+
1

(mπr)2
+

1
3mπr

]
exp(− mπr) (16)

where r is the inter-particle distance and

S12 = 3
(σ1 · r)(σ1 · r)

r2
− (σ2 · σ2) (17)

is the tensor operator. The ρ-exchange tensor interaction
Vtρ has the same functional form but an opposite sign,
namely, the mπ is replaced everywhere by mρ, and the
f2

π by − f2
ρ . The magnitudes of both the π and ρ contri-

butions grow quickly but in opposite directions with de-
creasing r as the density increases. The net result from
the π and ρ exchanges depends strongly on the poorly
known ρ-nucleon coupling strength. Moreover, while there
is still no solid experimental confirmation, it is possible
that the in-medium ρ meson mass mρ is different from its
free-space value. A density-dependent in-medium ρ me-
son mass mρ leads to very different tensor forces in dense
medium [96–98], and thus different Esym(ρ) at high densi-
ties [78,88,89,99,100]. As an illustration, shown in fig. 6 is

26Hz	:	inner	phase(?),	626.5Hz	:	spherical	+	cylindrical	(1t2)	
à	SGR1806-20	should	be	relatively	low	mass	NS	(M~1.2-1.4M⊙,	R~13km??)	
à	L	~	58-73MeV	



can we identify the 26Hz QPO?


density


crust
core
 (Strohmayer+ 91) 
spherical


linear response : fluid

(Landau)


slab-like


à two independent oscillations

  (i) spherical + cylindrical (sp+cy) à except for 26Hz (OK)

  (ii) tube + bubble (tu+bu) à 26Hz? consistently with the L constraint?

à bubble ~ spherical 

tube ~ cylindrical




µcy =
2
3
ECoul ×10

2.1(w2−0.3)

cylindrical


ECoul : Coulomb energy per unit volume

w2 : volume fraction


(Potekhin+98)	

Neutron star double-layer oscillations 5

0.917 0.918 0.919 0.920 0.921 0.922

10–9

10–8

r/R

! (
km

-2
)

K0 = 180 MeV
1.4M!, 12km17.5

31.0

52.2

0.920 0.925 0.930 0.935

10–9

10–8

r/R

! (
km

-2
)

K0 = 180 MeV
L = 52.2 MeV
1.4M!, 12km

SH

CH
Cy

Sp

Figure 1. (Color online) Left: Profile of the shear modulus in the tube phase (thin lines) and bubble phase (thick lines), calculated for
the neutron star models with M = 1.4M⊙ and R = 12 km. Here, K0 is fixed at 180 MeV, while L takes the value as labeled in the unit
of MeV. Right: For the neutron star model with M = 1.4M⊙ and R = 12 km constructed with K0 = 180 MeV and L = 55.2 MeV, the
profile of the shear modulus in the phase of spherical nuclei (Sp) and in the phase of cylindrical nuclei (Cy) is shown as well as that in
the tube (CH) phase and the bubble (SH) phase.

µcy =
2
3
ECoul × 102.1(w2−0.3), (5)

where ECoul and w2 denote the Coulomb energy per volume of a Wigner-Seitz cell and the volume fraction of cylindrical nuclei,

respectively, and the coefficient of 2/3 comes from the average over all directions between the wave-vector of the distortion

and the elongated direction under the assumption that crystallites of cylindrical nuclei randomly point. We remark that in

the liquid drop model ECoul is given by

ECoul =
π
2
(ρpRp)

2w2

[
ln
(

1
w2

)
− 1 + w2

]
, (6)

where ρp and Rp are the proton charge density and the proton radius of a cylindrical liquid drop (Ravenhall, Pethick &

Wilson 1983). By following a similar line of argument, it was shown that the deformation energy in the phase of slab-like

nuclei becomes of higher order with respect to the displacement. That is, this phase behaves as a fluid within the linear

response. This is the reason why one can consider the torsional oscillations inside the phases of spherical and cylindrical nuclei

separately from those inside the phases of tubes and bubbles.

The shear modulus in the tube (bubble) phase, i.e., µch (µsh), can be derived in a similar fashion to that in the phase of

cylindrical (spherical) nuclei, because the liquid crystalline structure of tubes (bubbles) is the same as that in the phase of

cylindrical (spherical) nuclei. In this study, therefore, we adopt Eq. (5) for the tube phase and Eq. (4) for the bubble phase

by properly replacing the relevant quantities in these formulae: In the tube phase, w2 in Eq. (5) (including ECoul) is replaced

by the volume fraction of a gas of dripped neutrons, while in the bubble phase ni and Z are replaced by the number density

of bubbles and the effective charge number Zbubble of a bubble, respectively (Sotani, Iida & Oyamatsu 2017a). In practice,

Zbubble is given by Zbubble = nQVbubble, with the volume of the bubble, Vbubble, and the effective charge number density of

the bubble, nQ, defined by the difference of the charge number density inside the bubble from that outside the bubble, i.e.,

nQ = −ne − (np − ne) = −np with the proton number density outside the bubble (np) and the number density of a uniform

electron gas (ne).

In Fig. 1, we illustrate the profile of the shear modulus inside the tube and bubble phases for neutron star models

constructed from the first three sets of the OI-EOSs listed in Table 1. From this figure, one can observe that the shear

modulus becomes discontinuous at the transition between the tube and bubble phases, which is similar to the case of the

transition between the phases of spherical and cylindrical nuclei (Sotani, Iida & Oyamatsu 2018). In addition, it is to be noted

that the shear modulus in the tube phase can decrease as the density increases and that this tendency becomes stronger for

larger L. This tendency may well come from the decrease of the volume fraction of a gas of dripped neutrons with density

(e.g., Watanabe & Iida (2003)).

4 TORSIONAL OSCILLATION FREQUENCIES AND COMPARISON WITH QPOS

We now turn to evaluations of the eigenfrequencies of fundamental torsional oscillations in the sphere-cylinder and tube-

bubble layers of the crust of a neutron star. To this end, we start with the perturbation equation in a spherical coordinate

system, which is given by linearizing the relativistic equation of motion that determines the torsional oscillations (Schumaker

& Thorne 1983; Sotani, Kokkotas & Stergioulas 2007) as
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than !Ee, which is positive. Consequently, the screening
makes the equilibrium value of rN larger than that in the
nonscreening limit, given by

rN
!0" =# dEsurf

4"!nxe"2fd
$1/3. !41"

On the other hand, the negligible screening effect on u
suggests that the pressure corrections due to the screening
through the Coulomb pressure and the electron pressure
%see the last two terms on the right side of Eq. !24"& are
negligibly small.
We proceed to see how the phase structure changes with

the strength of the surface tension C2 and the baryon density
nb. We find from Figs. 5 and 6 that as C2 decreases, the phase
boundaries in the case with screening approach those in the
case without screening. This is consistent with the fact that
for weaker surface tension, the equilibrium size of the spatial
structure becomes smaller, leading to smaller rN/#TF

!e" and
rc/#TF

!e". As nb increases with C2 fixed, on the other hand, the
screening-induced change in the phase boundaries becomes
more appreciable; the increase in the transition density be-
tween the cylindrical hole to the spherical hole phase is
larger than that between the slab to the cylindrical hole phase
while being smaller than that between the spherical hole to
the uniform phase. This is partly because #TF

!e" decreases with
increasing density and partly because at fixed nb, the higher
dimensionality has the larger equilibrium values of rN and rc.
This dimensionality dependence, which was also obtained in
earlier investigations based on various nuclear models (see,
e.g., Refs. [4,5,8,9], stems from the fact that generally the
equilibrium values of the surface energy density wsurf and

surface tension Esurf are almost degenerate among the five
crystalline phases at fixed nb and thus the equilibrium value
of rN behaves roughly as rN$d [see Eq. (12)].
In order to examine the influence of the screening on the

phase boundaries in further detail, we list in Table I the tran-

FIG. 6. Zero-temperature phase diagram of supernova matter on
the nb vs C2 plane. The solid lines are the phase boundaries obtained
for the case allowing for the electron screening. The dashed lines
are for the case ignoring the electron screening, which are taken
from the lower left panel in Fig. 3 of Ref. [9].

FIG. 7. Size of a nucleus or bubble rN and of a Wigner-Seitz cell
rc in neutron star matter calculated for C2=0.1, 1.0, and 2.5. The
Thomas-Fermi screening length #TF

!e" is also plotted. The solid lines
are the results for the case with screening and the dashed lines are
the results for the case without screening, which are taken from Fig.
5 of Ref. [8]. The symbols SP, C, S, CH, and SH stand for sphere,
cylinder, slab, cylindrical hole, and spherical hole, respectively.

FIG. 8. Size of a nucleus or bubble rN and of a Wigner-Seitz cell
rc in supernova matter calculated for YL=0.3 and C2=0.1, 1.0, and
2.5. The Thomas-Fermi screening length #TF

!e" is also plotted. The
solid lines are the results for the case with screening, and the dashed
lines are the results for the case without screening, which are taken
from Fig. 5 of Ref. [9]. The symbols SP, C, S, CH, and SH stand for
sphere, cylinder, slab, cylindrical hole, and spherical hole, respec-
tively.
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•  one can explain the 26Hz QPO with the torsional oscillations in 
tu+bu phase


HS+ 19


Sep. 19/2019
 日本物理学会@山形大学
 42


10 20 30 40 50 60 70 80
10

100

L (MeV)

fr
eq

ue
nc

y 
(H

z)

18 Hz

26 Hz

29 Hz

57 Hz

92.5 Hz

l = 2

l = 3

l = 6

l = 10

1.3M⊙, 13km
10 20 30 40 50 60 70 80

10

100

L (MeV)

fr
eq

ue
nc

y 
(H

z)

18 Hz

26 Hz

29 Hz

57 Hz

92.5 Hz

l = 2

l = 3

l = 6

l = 10

1.3M⊙, 13km
l = 2

l = 3

l = 4



additional QPOs

•  recently, the existence of additional QPOs is suggested by Miller et al. 



–  51.4, 97.3, 157Hz


Crustal oscillations inside pasta phases 7
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Figure 4. Same as Fig. 3, but for the neutron star models with 1.3M⊙ and 13 km in the left panel and with 1.8M⊙ and 12 km in the
right panel. The values of L for the vertical thick and thin lines are respectively L = 70.8 and 67.5 MeV in the left panel and L = 63.5
and 59.6 MeV in the right panel.
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Figure 5. The newly suggested QPOs in SGR 1806-20, i.e., 51.4, 97.3, and 157 Hz (Miller, Chirenti & Strohmayer 2018), which are
shown by the horizontal solid lines, are compared with the crustal torsional oscillations for the neutron star model with 1.3M⊙ and 13
km, where the original QPOs are also shown for reference. The 51.4 and 97.3 Hz QPOs may be identified by the ℓ = 8 and 15 fundamental
torsional oscillations inside the tube and bubble phases, while the 157 Hz QPO may be identified by the ℓ = 17 fundamental torsional
oscillations inside the spherical and cylindrical nuclei phases.

In the same figure (Fig. 3), we show the ℓ = 2, 3, and 4 fundamental frequencies excited inside the tube and bubble phases,

which are shown by the painted region. In each painted region, the lower and upper boundaries correspond to the results

with the maximum (R = 1) and minimum enthalpy (R = 0). From this figure, we find that ℓ = 4 fundamental frequency

corresponds to the 26 Hz QPO, which can not be explained by the torsional oscillations inside the phases of spherical and

cylindrical nuclei.

In the similar way, we calculate the neutron star models with (M,R) = (1.3M⊙, 13km) and (1.8M⊙, 12km), whose results

are shown in Fig. 4, where in the both panels the vertical thick and thin lines denote the suitable values of L for explaining the

QPOs except for the 26 Hz QPO in SGR 1806-20 by the torsional oscillations inside the phases of the spherical and cylindrical

nuclei, i.e., L = 70.8 and 67.5 MeV for the neutron star model with 1.3M⊙ and 13 km, while L = 63.5 and 59.6 MeV for that

with 1.8M⊙ and 12 km. On this figure, we put the expectation of the ℓ = 2, 3, and 4 fundamental frequencies excited inside the

tube and bubble phases. Since the dependence on L for the fundamental frequencies in the phases of spherical and cylindrical

nuclei is different from that for in the phases of the tube and bubble, to explain the QPOs with using the oscillations in the

both phases, one may select the suitable neutron star model. In fact, one can observe that the massive neutron star model

may be a little marginal for explaining the 26 Hz QPO with the ℓ = 4 fundamental oscillations inside the tube and bubble

phase together with the identification of the other QPOs by the oscillation in the phases of spherical and cylindrical nuclei.

That is, the less massive neutron star model seems to be more suitable in our identification. This tendency is consistent with

the neutron star models considered as a result of the comparison of the constraint on K0, which is obtained by the overtone

frequency in the phases of spherical and cylindrical nuclei, with the terrestrial constraint on K0 (Sotani, Iida & Oyamatsu

2018). Furthermore, considering the suitable value of L ∼ 70 MeV, the less massive neutron star model is consistent with the

mass formula for a low-mass neutron star (Sotani et al. 2014).

As an advantage of the smaller shear modulus in the tube phase, which leads to the smaller fundamental frequencies
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summary

•  NSs are a good candidate for probing physics in extreme conditions


•  Low-mass NSs directly connect to nuclear saturation parameters


–  mass and gravitational redshift (radius) can be expressed with


–  maximum mass of NSs, 2.94≦Mmax/M⊙≦3.04 with vs = 1


•  observational constraints

–  R ≲ 13.6km from GW170817


–  R =13.02 +1.24
-1.06 km, M =1.44 +0.15

-0.14M⊙ from NICER (Miller+19)


–  R =12.71 +1.14
-1.19 km, M =1.34 +0.15

-0.16M⊙ from NICER (Riley+19)


•  QPOs in SGR could be strongly associated with the NS oscillations. 


–  fundamental torsional oscillations are almost independent of K0


–  overtones depend on K0 and L, which can be expressed by


–  26Hz QPO comes from inner phase 


•  Identifying the QPO observations with the terrestrial constraint on K0


–  SGR1806-20 should be relatively low mass NS (M/M⊙~1.2-1.3, R~13km??)


–  L ~ 58-73MeV
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ς = (K0
4L5 )1/9

vanishes. It is not clear up to what density the adopted unified-EOSs are applicable. Nonetheless,

one can expect that the uncertainty from three-neutron interactions in the EOS of pure neutron

matter becomes relevant for ρ ! 2ρ0, as suggested by quantum Monte Carlo calculations28. We

thus examine the stellar models for ρc ≤ 2ρ0.

Fig. 1(a) shows the resultant M -R relation. To systematically describe various stellar models,

we introduce a new auxiliary parameter η defined as

η = (K0L
2)1/3. (1)

Remarkably, the M -R relation changes almost smoothly with η. In fact, we carefully chose the

powers of the parameters K0 and L in finding η. Note that we do not adopt the OI-EOS with

L " 10 MeV14, 15, because the pressure can become negative inside the star, which may tell us the

lower limit of η as η ! 30 MeV. Meanwhile, the upper limit sets that η " 200 MeV (Extended

Data Table 1) to examine in the wide-range parameter space, which is significantly higher than the

usual expectations in the nuclear physics7.

From the observational viewpoint, the radiation radius R∞ = R/
√

1 − 2GM/Rc2 and the

gravitational redshift z = 1/
√

1 − 2GM/Rc2 − 1 may be more relevant in describing the stellar

properties, which relation can be written as in Fig. 1(b). Actually, the detected photon flux is

proportional to (R∞/D)2, where D is the distance from the Earth. The gravitational redshift is

associated with the shift of atomic absorption lines emitted from stellar surface.

The smooth change of the stellar properties with η suggests that not only future terrestrial

4


