

祖谷 元 (RIKEN)

contents

- Neutron stars (NSs) & equation of state (EOS)
 - nuclear saturation parameters
- Low-mass NSs and its mass formula
 - introduction of a new parameter η
 - comment on the possible maximum mass of NSs
 - (M, R) constraint from NICER obs.
- asteroseismology in NSs
 - magnetar QPOs and crustal torsional oscillations
 - fundamental oscillations
 - overtones
 - effect of pasta phases
- summary

contents

- Neutron stars (NSs) & equation of state (EOS)
 - nuclear saturation parameters
- Low-mass NSs and its mass formula
 - introduction of a new parameter η
 - comment on the possible maximum mass of NSs
 - (M, R) constraint from NICER obs.
- asteroseismology in NSs
 - magnetar QPOs and crustal torsional oscillations
 - fundamental oscillations
 - overtones
 - effect of pasta phases
- summary

Properties of Neutron Stars (NSs)

NSs

- produce via supernova
- extreme state
 - high density inside the star;
 central density may become ~5 x nuclear density
 - strong magnetic field; existence of "magnetars", where $B{\sim}\,10^{14}\,G$ stronger than the critical field strength of the quantum electrodynamics
 - strong gravitational field; $GM/Rc^2 \sim 0.2$ (NS), 0.2 x 10⁻⁵ (Sun), 0.7 x 10⁻⁹ (Earth)
- NSs are a unique environment for understanding the physics under such extreme conditions

How to construct NSs

• Tolman-Oppenheimer-Volkoff (TOV) equation gives density profile of the spherically symmetric equilibrium of cold NSs.

EOS is essential to construct the stellar model, but still uncertain.

NS observations can make a constraint on EOS!!

理研-九大ジョイントワークショップ 「数理が紡ぐ素粒子・原子核・宇宙」

EOS near the saturation point

• Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

constraints on L

 $K_o \approx 230 \pm 20 \text{ MeV}$

(Shlomo+06, Piekarewicz 10)

neutron stars

- Structure of NS
 - solid layer (crust)
 - nonuniform structure (pasta)
 - fluid core (uniform matter)
- In particular, the nuclear saturation parameters become important in
 - physics in crust region
 - low-mass NSs itself

crust

Oyamatsu (1993)

- Whether pasta phase exists or not depends strongly on L.
- For $L \ge 100$ MeV, pasta structure almost disappears.

contents

- Neutron stars (NSs) & equation of state (EOS)
 - nuclear saturation parameters
- Low-mass NSs and its mass formula
 - introduction of a new parameter η
 - comment on the possible maximum mass of NSs
 - (M, R) constraint from NICER obs.
- asteroseismology in NSs
 - magnetar QPOs and crustal torsional oscillations
 - fundamental oscillations
 - overtones
 - effect of pasta phases
- summary

mass formula

- well-known mass formula of stable nuclei
 - Bethe-Weizacker mass formula
 - due to the density saturation

you can get a NS model !!

- How about NSs ?
 - structure of NS is determined as a result of balance of gravity & pressure gradient.
 - in general, not so simple...
- we are successful to derive a mass formula of low-mass NS
 - as functions of nuclear saturation parameter η & central density
 - almost independent of the EOS models

low-mass NS models

- low-mass NSs
 - low-central density
 - EOS for low-density region plays an important role
- t role ρ_c

MA

• EOS of nuclear matter for $\rho \leq \rho_0$ (normal nuclear density) would be determined with reasonable accuracy by terrestrial nuclear experiments.

12/24/2019

low-mass NS models

- low-mass NSs
 - low-central density
 - EOS for low-density region plays an important role

- EOS of nuclear matter for $\rho \leq \rho_0$ (normal nuclear density) would be determined with reasonable accuracy by terrestrial nuclear experiments.
- For $\rho \leq 2 \rho_0$, one can almost neglect an uncertainty of three nucleon interaction (Gandolfi+12) and contribution from hyperon (or quark etc...).

 \rightarrow we especially focus on the NS models for $\rho \leq 2 \rho_{\odot}$

unified EOS modes

- unified-EOS models
 - based on the EOSs of nuclear matter with specific values of $K_{\rm O}$ & L
 - consistent with empirical data of masses and radii of stable nuclei
 - describing both the crustal and core regions of NS
- we especially focus on
 - phenomenological EOS with various K_0 & L (Oyamatsu & lida O3; O7)
 - EOSs based on relativistic mean field models
 - Shen EOS (Shen+ 98)
 - Miyatsu EOS (Miyatsu+ 13)
 - Skyrme-type effective interaction
 - FPS (Pethick+ 95),
 - SLy4 (Douchin & Haensel O1)
 - BSk19, BSk20, BSk21 (Potekhin+ 13)

EOSs based on the different theoretical models

12/24/2019

MR relations

 $55.5 \lesssim \eta \lesssim 120$ MeV.

L = 30-80 MeV, K0 = 190-270 MeV (η = 92.75 MeV; L = 58.9 MeV, K0 = 230 MeV)

- NS models are constructed with various sets of $K_0 \& L$
- We can find the specific combination of $K_0 \& L$ describing the low-mass NSs.

「数理が紡ぐ素粒子・原子核・宇宙|

理研-九大ジョイントワークショップ 「数理が紡ぐ素粒子・原子核・宇宙」

$$\frac{M}{M_{\odot}} = 0.371 - 0.820u_c + 0.279u_c^2 - (0.593 - 1.254u_c + 0.235u_c^2) \left(\frac{\eta}{100 \,\mathrm{MeV}}\right)$$

$$z = 0.00859 - 0.0619u_c + 0.0255u_c^2 - (0.0429 - 0.108u_c + 0.0120u_c^2) \left(\frac{\eta}{100 \,\mathrm{MeV}}\right)$$

 $z = 1/\sqrt{1 - 2GM/Rc^2} - 1$

• via the simultaneous observations of M & z (or R or R_{∞}), one could extract the values of $\eta \& \rho_{c} \parallel$

radii of low-mass NSs

• with using the formulas of mass and gravitational redshift, one can also predict the radius of NS.

理研-九大ジョイントワークショップ 「数理が紡ぐ素粒子・原子核・宇宙」

possible maximum mass of NSs

- parameterize EOS (Hartle 78, Kalogera+96)
 - for $ho\lesssim 2
 ho_0$: stellar properties strongly depend on η - for $ho>2
 ho_0$: $p=lpha(
 hoho_t)+p_t$, where $ho_t=2
 ho_0$

constraining M/R with light curve

from NICER ob.

Parameter

理研-九大ジョイントワークショップ 「数理が紡ぐ素粒子・原子核・宇宙」

contents

- Neutron stars (NSs) & equation of state (EOS)
 - nuclear saturation parameters
- Low-mass NSs and its mass formula
 - introduction of a new parameter η
 - comment on the possible maximum mass of NSs
 - (M, R) constraint from NICER obs.
- asteroseismology in NSs
 - magnetar QPOs and crustal torsional oscillations
 - fundamental oscillations
 - overtones
 - effect of pasta phases

• summary

watermelon

- how to know the best time to eat a watermelon?
 - inside can not be checked before cutting
- "empirical rule"
 - to check the best time, knock a watermelon
 - high frequency "KIN-KIN"; too young
 - "BAN-BAN" ; best time !
 - low frequency "BON-BON"; too old
 - need many years to get this ability

- asteroseismology !!

Seismology, Helioseismology

- Seismic waves tell us information inside the Earth (seismology)
- The interior of the Sun can be probed through the wave pattern on the surface (helioseismology)

「数理が紡ぐ素粒子・原子核・宇宙」

non-radial Oscillations in neutron stars

- axial type oscillations
 - no stellar deformation, no density variation
 - t-modes (torsional oscillations) : oscillations due to the elasticity
 - w-modes (spacetime) : oscillations of specetime itself ~ M/R
- polar type oscillations
 - with density variation & stellar deformation
 - important for considering the GWs emission
 - f-mode (fundamental) ~ $(M/R^3)^{1/2}$
 - p-modes (pressure) : sound speed crossing ~ $(M/R^3)^{1/2}$
 - g-modes (gravity): thermal/composition gradients ~ B-V frequency
 - s-modes (shear) : oscillations due to the elasticity
 - Alfven modes
 - inertial modes (effect of rotation)
 - w-modes (spactime) : oscillations of specetime itself ~ M/R

GW asteroseismology in NSs

 via the observations of GW frequencies, one might be able to see the properties of NSs

Andersson & Kokkotas (1998)

QPOs in SGRs

- Quasi-periodic oscillations (QPOs) in afterglow of giant flares from softgamma repeaters (SGRs)
 - SGR 0526-66 (5th/3/1979): 43 Hz
 - SGR 1900+14 (27th/8/1998): 28, 54, 84, 155 Hz
 - SGR 1806-20 (27th/12/2004): 18, 26, 30, 92.5, 150, 626.5, 1837 Hz

(Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06)

- additional QPO in SGR 1806-20 is found : 57Hz (Huppenkothen + 2014)

advantage for crustal oscillations

- magnetic configuration inside NSs are still uncertain ۲
- EOSs for core region are unfixed yet ٠
- to avoid such uncertainties, we focus on the crustal torsional ٠ oscillations without effects of magnetic field
 - fluid core: zero shear modulus ---> no shear oscillations
 - torsional oscillations localize only in crust region

torsional oscillations 1

- axial parity oscillations
 - incompressible
 - no density perturbations (less associated with GWs)
- in Newtonian case

(Hansen & Cioff 1980)

$$\ell t_0 \sim \frac{\sqrt{\ell(\ell+1)\mu/
ho}}{2\pi R} \sim 16\sqrt{\ell(\ell+1)} \text{ Hz} \quad \ell t_n \sim \frac{\sqrt{\mu/
ho}}{2\Delta r} \sim 500 \times n \text{ Hz}$$

- μ : shear modulus
- frequencies \propto shear velocity $v_s = \sqrt{\mu / \rho}$
- overtones depend on crust thickness
- one can consider torsional oscillations independently of core EOS
- effect of magnetic field
 - frequencies can become larger

(Sotani+07, Gabler+12, 13)

torsional oscillations 2

- \rightarrow two independent oscillations
 - (i) spherical + cylindrical
 - (ii) cylindrical-hole + bubble

torsional oscillations in Sph. nuclei

- EOS for core region is still uncertain.
- To prepare the crust region, we integrate from r=R.
 - M, R: parameters for stellar properties
 - L, K_0 : parameters for curst EOS (Oyamatsu & lida O3, O7)
- In crust region, torsional oscillations are calculated.

- frequency of fundamental oscillation $\propto v_s (v_s^2 \sim \mu/H)$

comparison to SGR 1806-20

- for R = 12 km and $M = 1.4 M_{\odot}$
- discovery of new QPO from SGR1806-20, which is <u>57Hz</u>

 I = 3, 4, 5, 9, 15 all QPOs can be identified
 I = 2, 3, 6, 10 except for 26 Hz, QPOs can be identified

constraint on L via QPO frequencies

12/24/2019

理研-九大ジョイントワークショップ 「数理が紡ぐ素粒子・原子核・宇宙」 35

effect of pasta structure

HS+ 18

constraint on L

1st overtone HS+ 18

- frequencies of 1^{st} overtone depend on $K_0 \& L$

12/24/2019

核・宇宙」

constraints on L

26Hz : inner phase(?), 626.5Hz : spherical + cylindrical $(_1t_2)$

→ SGR1806-20 should be relatively low mass NS (M~1.2-1.4M $_{\odot}$, R~13km??) → L ~ 58-73MeV

can we identify the 26Hz QPO?

oscillations in tu+bu & in Sp+Cy

 one can explain the 26Hz QPO with the torsional oscillations in tu+bu phase
 Sep. 19/2019
 日本物理学会@山形大学

additional QPOs

- recently, the existence of additional QPOs is suggested by Miller et al.
 - 51.4, 97.3, 157Hz

summary

- NSs are a good candidate for probing physics in extreme conditions
- Low-mass NSs directly connect to nuclear saturation parameters
 - mass and gravitational redshift (radius) can be expressed with $\eta = (K_0 L^2)^{1/3}$
 - maximum mass of NSs, 2.94 $\leq M_{max}/M_{\odot} \leq$ 3.04 with v_s = 1
- observational constraints
 - $R \lesssim 13.6$ km from GW170817
 - R = 13.02 $^{+1.24}_{-1.06}$ km, M = 1.44 $^{+0.15}_{-0.14}$ M_o from NICER (Miller+19)
 - R = 12.71 $^{+1.14}_{-1.19}$ km, M = 1.34 $^{+0.15}_{-0.16}$ M_o from NICER (Riley+19)
- QPOs in SGR could be strongly associated with the NS oscillations.
 - fundamental torsional oscillations are almost independent of K_{o}
 - overtones depend on K_o and L, which can be expressed by $\zeta = (K_0^{-4}L^5)^{1/9}$
 - 26Hz QPO comes from inner phase
- Identifying the QPO observations with the terrestrial constraint on K_{0}
 - SGR1806-20 should be relatively low mass NS (M/M_{\odot} ~1.2-1.3, R~13km??)
 - L ~ 58-73MeV