SAMURAI WS@RIKEN 22-23 Nov. 2010

Search for unbound excited states of proton rich nuclei

Naohito IWASA

Department of Physics, Tohoku University

Mot TOHOKU UNIVERSITY	iva	tic)n					495	
• $F(2^+)$ and $R(F2)$ in even-even nuclei		_					⁴⁰ Fe	⁴ °Fe	
• $E(2)$ and $B(E2)$ in even-even indefer		I	sotope			⁴² Cr	⁴⁴ Cr	⁴⁶ Cr	
collectivity/shell structure		B	$(E2;\uparrow)$				01	0.892	
Systematical studies						⁴⁰ Ti	⁴² Ti	900 ± 10 ^{44}Ti	
• Systematical statics							1.55	1.08	
\checkmark magicity disappearance around ³² I	Mg- ³² N	Ne			36 C a	38 C a	870 ± 250	$\frac{650 \pm 160}{4^2 C_2}$	
\rightarrow now magic number $N-14$ 16 in 22	$ 11 \qquad 302 $						3.90	1.52	
\rightarrow new magic number $N=14$, 10 m ²⁻	, <u>-</u> 0 1					96±21	99±17	420 ± 30	
B(E2) anomaly of ^{16,18} C				³² Ar	^{34}Ar	³⁶ Ar	³⁸ Ar	⁴⁰ Ar	
				1.82	2.09 240 ± 40	1.97	2.17 130 ± 10	1.46 330 ± 40	
• ${}^{24}Si, {}^{28}S (T_7 = -2)$: small $B(E2)$			28 S	³⁰ S	³² S	³⁴ S	³⁶ S	³⁸ S	
0+ $2+$ n and n			1.51	2.21	2.23	2.13	3.29	1.29	
$0^+ \rightarrow 2^+$: neutrons plays important role	22 Si	24 S i	26 S i	$\frac{324 \pm 41}{^{28}\text{Si}}$	300 ± 13 30Si	212 ± 12 32Si	104 ± 28 ³⁴ Si	235 ± 30 $_{36Si}$	
subshell closure $(Z=14, 16)$ effect?		1.88	1.80	1.78	2.24	1.94	3.33	1.40	
		$60 \pm 20?$	356 ± 34	326 ± 12	215 ± 10	113 ± 33	85±33	190 ± 60	
$E(2^+)$ is not high, not magic, yet.	^{20}Mg	²² Mg	^{24}Mg	²⁶ Mg	^{28}Mg	^{30}Mg	³² Mg	³⁴ Mg	
	1.01 177 ± 32	1.23 370 ± 130	1.37 432 ± 11	1.81 305 ± 13	1.47 350 ± 50	1.40 295±26	0.883 454 ± 78	0.030 631 ± 126	
• ${}^{50}Ca: B(E2): smallest in Ca isotopes$	¹⁸ Ne	²⁰ Ne	²² Ne	²⁴ Ne	²⁶ Ne	²⁸ Ne	³⁰ Ne	³² Ne	
$F(2^+)$ · 0 3 MeV smaller than that of	1.89	1.63	1.28	1.98	2.02	1.32	0.79	0.72	
E(2). 0.51vie v sinanei than that of	$1/6 \pm 30$	340 ± 30	230 ± 10 200	170 ± 60	228 ± 41	132 ± 23			
mirror nucleus ³⁶ S.	6.92	1.982	1.67	3.17	4.72				
	41±4	45 ± 2	28 ± 2	21 ± 8					
	14C	¹⁶ C	¹⁸ C	²⁰ C	^{22}C				
	1.01 1.77 1.02 $1.3918\pm 3 2.7\pm 0.7 4.3\pm 1.0$								

Proposals

- 1. Coulomb dissociation/proton inelastic scattering of ²²Si
- 2. Search for 0⁺ and 2⁺ states in ³⁴Ca by fragmentation of ³⁶Ca
- 3. Proton inelastic scattering of ⁴²Cr, ⁴⁶Fe

							-
	Ι	sotone					
		E (2 ⁺)			⁴² Cr	⁴⁴ Cr	⁴⁶ Cr
	В	$(\mathbf{E2:}\uparrow)$					0.892
							900 ± 10
					⁴⁰ Ti	⁴² Ti	⁴⁴ Ti
						1.55	1.08
						870 ± 250	650 ± 160
-			³⁴ Ca	³⁶ Ca	³⁸ Ca	⁴⁰ Ca	⁴² Ca
e				3.02	2.21	3.90	1.52
					96±21	99±17	420 ± 30
			³² Ar	³⁴ Ar	³⁶ Ar	³⁸ Ar	⁴⁰ Ar
			1.82	2.09	1.97	2.17	1.46
			266 ± 68	240 ± 40	300 ± 30	130 ± 10	330 ± 40
		²⁸ S	³⁰ S	32 S	^{34}S	³⁶ S	³⁸ S
		1.51	2.21	2.23	2.13	3.29	1.29
			324 ± 41	300 ± 13	212 ± 12	104 ± 28	235 ± 30
²² Si	²⁴ Si	²⁶ Si	²⁸ Si	³⁰ Si	³² Si	³⁴ Si	³⁶ Si
	1.88	1.80	1.78	2.24	1.94	3.33	1.40
	$60 \pm 20?$	356 ± 34	326 ± 12	215 ± 10	113 ± 33	85±33	190 ± 60
^{20}Mg	^{22}Mg	^{24}Mg	²⁶ Mg	²⁸ Mg	³⁰ Mg	³² Mg	³⁴ Mg
1.61	1.25	1.37	1.81	1.47	1.48	0.885	0.656
177 ± 32	370 ± 130	432 ± 11	305 ± 13	350 ± 50	295 ± 26	454 ± 78	631±126
¹⁸ Ne	²⁰ Ne	²² Ne	²⁴ Ne	²⁶ Ne	²⁸ Ne	³⁰ Ne	³² Ne
1.89	1.63	1.28	1.98	2.02	1.32	0.79	0.72
176 ± 30	340 ± 30	230 ± 10	170 ± 60	228 ± 41	132 ± 23		
^{16}O	¹⁸ O	^{20}O	²² O	²⁴ O			
6.92	1.982	1.67	3.17				
41 ± 4	45±2	28 ± 2	21 ± 8				
$^{14}\mathrm{C}$	¹⁶ C	¹⁸ C	²⁰ C	²² C			
7.01	1.77	1.62	1.59				
18 ± 3	2.7 ± 0.7	4.3 ± 1.0					

⁴⁶Fe ⁴⁸Fe

Coulomb dissociation of ²²Si

- Z=14(subshell), N=8(magic) $S_p=1.2$ MeV
- No excited states are known
- Mirror ²²O: *E*(2⁺)=3.17MeV larger than surrounding *N*=8 nuclei
 → subshell closure?

- $B(E2 \uparrow) \sim 200e^{2} fm^{4}: {}^{16}O + 6p$
- B(E2 ↑)<100e²fm⁴: Z=14 subshell colsure is significant
- To determine $E(2^+)$, B(E2), and M_n/M_p in ²²Si, CD and proton inelastic scattering experiments are desired.

Coulomb dissociation of ²²Si

If excited states in ²¹Al exist between $0.3 \sim 2.0 \text{MeV}$,

Measurements of ${}^{20}Mg+2p+\gamma$, ${}^{18}Ne+4p$ channels

0⁺ and 2⁺ states in ³⁴Ca

- P. Doornenbal,... T.Otsuka et al. suggested the island of inversion in proton rich region may start at N = 14 in ³⁴Ca.
- Shell mode calculations with an isospin symmetric USD based interaction using experimental proton and neutron SPE from the A = 17, T = 1/2 isospin doublet, can be explained the extremely large mirror energy difference of ³⁶Ca and ³⁶S, $E(2^+, {}^{36}Ca) E(2^+, {}^{36}S)$.
 - This model predictes the island of inversion in proton rich region may start at N = 14 in ³⁴Ca.
- To confirm the model, $E(2^+)$ and B(E2) of ³⁴Ca are desired.

Search for 0⁺ and 2⁺ states in ³⁴Ca

- P. Doornenbal,... T.Otsuka et al. suggested the island of inversion in proton rich region may start at N = 14 in ³⁴Ca.
- Shell mode calculations with an isospin symmetric USD based interaction using experimental proton and neutron SPE from the A = 17, T = 1/2 isospin doublet, can be explained the extremely large mirror energy difference of ³⁶Ca and ³⁶S, $E(2^+, {}^{36}Ca) E(2^+, {}^{36}S)$.
 - This model predictes the island of inversion in proton rich region may start at N = 14 in ³⁴Ca.
- To confirm the model, $E(2^+)$ and B(E2) of ³⁴Ca are desired.

P. Doornenbal et al., PLB 647 (2007) 237

Search for excited states in ⁴²Cr, ⁴⁶Fe

⁴²Cr: Z=24, N=18 S_p =1.11MeV(theory) No excited states are known. Mirror ⁴²Ar: $E(2^+)$ =1.21MeV

⁴⁶Fe: *Z*=26, *N*=20(magic) ⁴⁰Ca+6 protons $S_p = 1.42 \text{MeV}$ (theory) No excited states are known. Mirror ⁴⁶Ca: *E*(2⁺)=1.35MeV 2.574+ $\overline{2.42}$ 0^+ (1.42)1.35 2^{+} ⁴⁵Mn+p 0.360 ⁴⁴Cr+2p 0^{+} 46 Fe ⁴⁶Ca

Experimental Setup High resolution mode of SAMURAI. DALI 2 for γ measurement Pb, Be, Liq. H₂ targets ²²Si, ³⁴Ca,... 3×2 SSD (xyu, xyv) ICF, FDC, plastic PDC, plastic¹ 2 protons ²⁰Mg, ³²Ar,... SSD should be in vac. chamber. Focus: good mass res. \rightarrow breakup events and breakup Less influence of MS positions are identified

Target chamber, SSD and SSD chamber should be constructed.

Yield estimation

²²Si

- 100cps from 100pnA ³⁶Ar @400AMeV
 100cps from 33pnA ²⁸Si @400AMeV
- Assuming $\sigma_{CD} \sim 8$ mb at 250AMeV
- Target 200mg/cm² Pb ${}^{22}Si+Pb \rightarrow {}^{20}Mg+2p$ coincidence efficiency 20% ($E_{rel} \sim 3MeV$, rough) 8 events/day ~ 56 events/week
- Target 200mg/cm² Liq.H₂ more than 200events are expected to be measured for 1days.

³⁴Ca

- 3kcps ³⁶Ca from 40pnA ⁴⁰Ca @400AMeV purity ~20%
- fragmentation cross section: 0.1mb
- target 500mg/cm² ⁹Be efficiency: 20% (E_{rel} =3~4MeV) 173events/day~1211 events/week

Efficiency is estimated using ⁷Be+p coincidence efficiency of KaoS at GSI. Precise efficiency calculation is needed, using realistic magnetic field, because proton detection efficiency strongly depends on the fringing field.

Yield estimation for ⁴²Cr, ⁴⁶Fe

⁴²Cr

0.04cps from 30pnA ⁸⁴Kr
 10 times higher intensity beam is avaliable, (p,p') measurement is possible.

 $\sigma = 5 mb$

- Target 200mg/cm² Liq. H₂
- 4 events/day = 30 events/week

⁴⁶Fe

0.007cps from 30pnA ⁸⁴Kr
 60 times higher intensity beam is avaliable, (p,p') measurement is possible.

 $\sigma = 5 \text{mb}$

Target 200mg/cm² Liq. H₂

4 events/day = 30 events/week

Summary

- Coulomb dissociation reaction and proton inelastic scattering are powerful too to study nuclear astrophysics and nuclear structure.
- Coulomb dissociation of ²²Si into ²⁰Mg+2p may provide information of Z=14 subshell closure near the drip line. Experiment in 2014?
- From fragmentation of ³⁶Ca, mass and *E*(2⁺) of ³⁴Ca is expected to be determined. In 2015?
- Proton inelastic scattering experiments of ⁴²Cr and ⁴⁶Fe can be performed when high intensity ⁸⁴Kr beam intensity is available.