

Pygmy and giant resonances in neutron-rich nuclei

Kenichi Yoshida

Collective modes unique to neutron-rich nuclei

NEUTRON EXCESS

✓IS and IV mixing modes
✓Neutron-excitation dominant modes
✓Neutron-skin excitation modes

Soft dipole mode, Pygmy resonance

strength	GDR
Dipole	
	Energy

Pygmy resonance in ²⁶Ne

6% of the TRK sum rule (up to 10MeV)

Single-particle excitation is dominant: $\nu(2s_{1/2}^{-1}1p_{3/2})$

Decay pattern of pygmy resonance

J.Gibelin et al., PRL101(2008)212503

TABLE I. Experimental neutron branching ratios for the structure at $E^* \sim 9$ MeV in ²⁶Ne to the ²⁵Ne states, compared to statistical decay calculations [26] for several multipolarities. We assumed that the reaction on ²⁷Al induces only L = 2 transitions, see text.

Final ²⁵ Ne state		Experiment			Statistical decay		
Energy (MeV)	J^{π}	Pb	Pb $(L = 1)$	Pb (L = 2) = Al	L = 1	L = 2	L = 3
0.0	$1/2^{+}$	$5^{+17}_{-5}\%$	$5^{+32}_{-5}\%$	$4^{+5}_{-4}\%$	40%	28%	22%
1.7 & 2.0	$5/2^+ + 3/2^+$	$66\% \pm 15\%$	$42\% \pm 30\%$	$95^{+5}_{-15}\%$	55%	67%	75%
3.3	$(3/2^{-})$	$35\%\pm9\%$	$60\%\pm17\%$	$5^{+6}_{-5}\%$	5%	4%	3%

A striking feature of the observed decay pattern is the absence of decay to the ²⁵Ne GS, which is in contradiction with the predicted structure of the pygmy states. Indeed, it

Theoretical branching ratios, presently not available, are highly desirable for a more precise comparison. We note

Collective modes unique to neutron-rich nuclei

NEUTRON EXCESS

✓IS and IV mixing modes
✓Neutron-excitation dominant modes
✓Neutron-skin excitation modes

Soft dipole mode, Pygmy resonance

DEFORMATION

Mixing of modes with different angular momenta

Pygmy resonance + collective octupole mode

A new kind of negative-parity excitation mode !?

IV dipole excitations in neutron-rich Mg isotopes KY, PRC80(2009)044324

	³⁴ Mg	³⁶ Mg	³⁸ Mg	⁴⁰ Mg
$\beta_{2,n}$	0.35	0.31	0.29	0.28
β _{2,p}	0.41	0.39	0.38	0.36

GDR: "K splitting"

good indicator of deformation

Unique feature in neutron drip-line nuclei

✓ As approaching the drip line, the bump structure below 10MeV develops.

Pygmy mode in ⁴⁰Mg

Microscopic structure of pygmy mode in ⁴⁰Mg

At 8.22 MeV

2qp excitations with $X^2 - Y^2 \ge 0.02$

2	α	eta	$E_{\alpha} + E_{\beta}$	$X_{\alpha\beta}^2 - Y_{\alpha\beta}^2$	$D_{1,lphaeta}$	$O_{1,\alpha\beta}$
			(MeV)	and New Action	$(e \mathrm{fm})$	(fm^3)
(a)	$\nu[202]3/2$	$\nu[321]1/2$	8.28	0.289	0.164	-14.8
(b)	$\nu[200]1/2$	$\nu[312]3/2$	8.26	0.167	-0.190	10.5
(c)	$\nu[321]3/2$	$\nu[440]1/2$	7.49	0.062	0.054	29.7
(d)	$\nu[303]7/2$	$\nu[422]5/2$	7.92	0.050	0.059	3.82
(e)	u[310]1/2	$ u 3/2^{+} $	7.96	0.037	0.159	16.4
(f)	$\nu[200]1/2$	$\nu[312]3/2$	9.04	0.034	0.011	-5.05
(g)	$\nu[200]1/2$	$\nu[310]1/2$	7.72	0.030	-0.053	-5.72
(h)	$\nu[303]7/2$	$\nu[413]5/2$	9.74	0.021	-0.087	10.7
(i)	$\nu[312]5/2$	$\nu[411]3/2$	6.91	0.020	0.073	23.4
(j)	$\nu[312]5/2$	$ u 3/2^{+} $	8.97	0.020	0.106	-2.29

Generated by many 2qp excitations !

Isoscalar character of the pygmy mode

Responses for the compression dipole operator

Tremendous enhancement of the transition strengths in the low-energy region

NEUTRON SKIN EFFECT (?)

I.Hamamoto, H.Sagawa, X.Z.Zhang, PRC57(1998)R1064

Mixing of different modes of excitation

GMR in deformed nuclei

 2^{4}Mg $\beta_{2}(\nu) = 0.40$ $\beta_{2}(\pi) = 0.41$

Prolately deformed

Coupling between the GMR and GQR

ISGMR in the rare-earth nuclei

GRs and matter properties

Deformation in Zr isotopes

Strong deformation in Zr isotopes around N=70

Effects deformation and neutron excess on GMR

GMR in deformed drip-line nuclei

KY, PRC82(2010)034324

✓ Excitation of neutrons✓ Threshold strength

Effect of neutron excess

Mean energy:
$$ar{E}=rac{m_1}{m_0}$$

Solid (dotted) lines: Scaling model S.Nishizaki, K.Andō, PTP**73**(1985)889

Concentration of the strengths in the low energy region

Summary

Collectivity of the pygmy resonance, and the condition for its emergence Not yet known

✓ Systematic investigation

✓ Microscopic structure

Pygmy resonance in the deformed Mg isotopes IV dipole + IS octupole + IS compression dipole

□Giant monopole resonance

Deformation: coupling with the GQR Neutron excess: enhancement of the low-lying strength