Heavy Ion Detectors

T. Kobayashi, N. Chiga, Y. matsuda, K. Sekiguchi, graduate students (Tohoku Univ.) H. Otsu (Riken)

1-1. (General) Consideration

* Limitation : fully-stripped ions, $A < 80 \sim 100$

* PID (<u>Particle ID</u>entification) : Z(charge), A(mass)

 $\longleftarrow rigidity (R), charge (Z), velocity (\beta)$

 $\longleftarrow rigidity (R), charge (Z), total energy (E)$

$$\frac{\sigma_A}{A} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_Z}{Z}\right)^2 + \left(\gamma^2 \frac{\sigma_\beta}{\beta}\right)^2}$$
$$\frac{\sigma_A}{A} = \sqrt{\left((\gamma+1)\frac{\sigma_R}{R}\right)^2 + \left((\gamma+1)\frac{\sigma_Z}{Z}\right)^2 + \left(\gamma\frac{\sigma_E}{E}\right)^2}$$
$$\gamma \sim 1.3$$

$$\frac{\sigma_A}{A} \approx \frac{0.2}{80} \iff \frac{\sigma_R}{R} \approx \frac{\sigma_\beta}{\beta} \approx \frac{\sigma_E}{E} \approx 0.1\%$$

required rigidity resolution
 for invariant-mass method ~ 1% >

required rigidity resolution for PID $\sim 0.1\%$

A/Z=3, 250 MeV/A

D = 2.4 cm /%, D'= 8mrad /% $(x \mid x) = 0, (x \mid \theta) = 0.3 cm / mrad,$ $(\theta \mid \theta) = 0.01, (\theta \mid x) = 3.3 mrad / cm$ $D_{eff} = (\theta \mid \theta) D - (x \mid \theta) D \approx -240 cm$

Momentum Resolution:

$$\left(\frac{\sigma_p}{p}\right)^2 = \left(\frac{(\theta \mid \theta)}{D_{eff}}\sigma(x_D)\right)^2 + \left(\frac{(x \mid \theta)}{D_{eff}}\sigma(x'_D)\right)^2 + \left(\frac{\sigma(x_T)}{D_{eff}}\right)^2$$

 $\sigma(x_D) \approx 0.3 mm,$ $\sigma(x'_D) \approx 1 mrad,$ $\sigma(x_T) \approx 0.5 mm$

FDC2 : angular resolution $< 1 \text{ mrad} \sim L/L_r \sim 10^{-3}$

* Position measurement

* Beam Proportional Chamber (BPC) :
* Beam Drift Chambers1,2 (BDC1,2) :
* Forward Drift Chamber1 (FDC1) :
* Forward Drift Chamber2 (FDC2) :
* Proton Drift Chamber1,2 (PDC1,2) :

* Charge measurement
* Ion Chamber for Beam (ICB) :
* Ion Chamber for Fragment (ICF) :

momentum tagging at F5 beam phase space scattering angle rigidity analysis for fragments rigidity analysis for protons

charge of beam charge of fragment

* TOF (charge) measurement * Hodoscope for Fragment (HODF) : * Hodoscope for protons (HODP) :

* Velocity measurement

*Total Internal Reflection-type Cherenkov (TIRC): high-precision velocity meas.

*Total-Energy measurement

*Total Energy Detector (TED): high-precision total-energy meas.

2.2 Planned Setup @spring 2012

Eff. Area: Config: config: #Anodes: Gas: 240mm x 150mm x1, x2 4mm-spacing MWPC 128 iC4H10 200 torr for p 20 torr for Kr

status : built, useded in the experiment

3.2 : BDC (<u>B</u>eam <u>D</u>rift <u>C</u>hamber)

3.3 : FDC1 (<u>F</u>orward <u>D</u>rift <u>C</u>hamber 1)

Drift dist.: Half Gap: Eff. Area: #Anodes: Config: Gas: L/Lr :	±5mm 5mm φ 310mm (620 x 340) 448 xx'uu'vv'xx'uu'vv'xx' He+60%CH4 @1atm, iC4H10 <200 torr 0.5 x 10-3	Status : * built * HV leakage problem fixed * being tested * Outer box being designed	
(ō)			
		FDC1 Assembly 3-Oct-2008 Kobaya	ashi T.

* cell : hexagonal cell (10mm drift length)

* anode wire : 40 μ m ϕ Au-W

* field wire : $80 \,\mu \,\mathrm{m}\,\phi$ Au-Al

* xx', uu', vv' are grouped separated by shield wires

FDC2P組立図 動が作特性試験用 Super-layer(xx') *3層 8-Dec-2009 TK

* Basic operation being studied using small test chamber with the identical cell/layer configuration

3.4-2 : FDC2

3.5-1:PDC1,2	(Proton Drift	Chamber 1	I,2)
--------------	---------------	-----------	------

Configuration:	Cathode_U(+45°), Anode_V(-45°), Cathode_X(0°), Anode_U, Cathode_V
Drift dist.:	±8mm
Half Gap:	8mm
Cathode pitch:	3mm
Cathode Strip:	12mm (4 cathode wires), #Readout: 136 strips/ plane x 3 planes x 2set~816ch
Anodes:	428 (no readout)
Effective area:	1700mm(H) x 800mm(V)

PID of momentum-analyzed RI beams @HIMAC 270 MeV/A

- Status :
- * built
- * Preamp with 10 usec decay time
- * Shaping amp. with 0.25usec time const. unipolar output with active baseline rest.
- * tested

for z=36 @300MeV/A pulse height resolution ~ 0.9% Charge resolution: $\sigma_{z} \sim 0.17$

3.7 : ICF (<u>lon C</u>hamber for <u>F</u>ragment)

3.8 : HODF/HODP (<u>Hod</u>oscope for <u>Fragment / Proton</u>)

Slat:1200mm(V) x 100mm(H) x 10mm(t), 16 slats/hodoscopePlastic:BC408/EJ200effective area:1600mm(H) x 1200mm(V)PMT:H7195 with Booster

Status :

* 30 assemblies and 2 stands were built

* to be mounted on the stand

3.9-1 : TIRC (Total Internal Reflection Cherenkov)

Kr beam : 200-400MeV/A

1mm^t, wide-gate

angle dep. : ~2.5%/deg

Estimated velocity resolution using energy-degraded Kr beam

Thickness : 1, 2mm^t

* pulse shape : cherenkov (short decay time) + scintillation? (long decay time)

* large radiation damage observed

3.10-1 : TED (<u>T</u>otal <u>Energy</u> <u>D</u>etector)

*R&D

*Nal(TI)+PMT, HP-Ge, CsI(TI)+PD: 0.3-0.4% (rms) for E=25-30GeV

*Csl(pure) : - smaller light output, UV

+ fast decay time, strong against radiation damage

* Design

Crystal : pure Csl, 100x100x50(t)32 elements PMT : R6233HA (3" ϕ , non-UVW) Effective area: 800 x 400

mass separation of RI beam

radiation damage being studied

4. Summary : Heavy Ion Detectors

* All detectors more or less, conventional mostly under construction w/o major problems *Beam tests @HIMAC SB2 actual detectors, prototypes... * to be constructed in FY2010 *ICF *FDC2 + stand *****TED elements *(FDC1 detector box) * to be constructed in FY2011 *PDC * and many other remaining items...