

Magnetic Field Mapping on SAMURAI dipole magnet

SAMURAI Workshop 2010/11/22

Hideaki Otsu RI Physics lab., RIKEN Nishina Center

Issues

- Questions to be solved for magnetic field
 - Whether is magnetic field measurement needed or not?
 - Are calculated field results sufficient to solve momentum with 1/1000 accuracy?
 - How can we utilize the calculation magnetic field?
- Contribution for solving the questions
 - Calculated (B_x, B_y, B_z) map with TOSCA code by H. Sato
 - with ideal situation and various deviations
 - Tracking (3D) from X_t to X_f with Geant 4 code by T. Isobe
 - Working group headed by H. Otsu for final judgement and preparation for field map measurement if needed

Field distribution

Calculated (B_x, B_y, B_z) map with TOSCA code by H. Sato
x=y=0, B_y

Field shape drastically changed at around 1.6 T Scaling could not be always well operated

Field distribution

• θ dependence : $B_y(z=0), B_y(x=0), B_y(x=z)$

 θ symmetry is broken

Tracking

- Tracking code by H. Isobe using Geant 4 package
 - 3D
 - Multiple scattering (gauss shape limit) can be implemented
 - $X_t \rightarrow X_f$ tracking with given δ
 - Ideal field map
- To be studied
 - mesh size (1cm at present)
 - sufficient or more than enough
 - calibration method
 - •
- To be implemented
 - Trace back routine : $X_f \rightarrow X_t$ with assumed δ
 - Various field map

- Controllable
 - Coil position deviation (*x*,*y*,*z*)
 - Pole position deviation (*z*,*x*)
 - ...
- Uncontrollable
 - Iron μ inhomogeneity
 - Peripheral iron materials other than magnet itself

• ...

Time estimation of magnetic field measurement

- Volume to be measured : [mm³]
 - $X:-1500 \sim 1500$
 - $Y:-400 \sim 400$
 - $Z:-2500 \sim 2500$
- Magnet setting : 0.5 3.0 T at center, 6 set
- Every 1cm pitch : 9e6 points * 6 = 5.4e7
- 1sec/1 point (very optimistic) \rightarrow 5.4e7/8.64e4 = 625d ~ 2 year...
- Every 5cm pitch, 10 sec/1 point \rightarrow 50d (24h work/1d)
- +-X, +-Z symmetry assumed, +-Y symmetry not assumed
 - Then 12.5d(24h work/1d) = 37.5d (8h work hour/1d)

Realistic solution of magnetic field measurement

- Good candidate period for the measurement
 - 2012 summer break
 - after commissioning 2012/03 and first phase experiments
- Method
 - hall probe
 - 1/4 region at accessible region from Neutron window
 - w/o removing detectors

Precise position measurement with Photo Grammetry system

- Photo Grammetry system V-STAR S/E5-M would be introduced
 - 3D position determination with $40 \ \mu m$ at $4 \ m$ scale.
 - Estimated value 1659 man JY (TACC co. ltd.)

Property	
High precision	$40\mu\mathrm{m}$ on $4\mathrm{m}$ scale
Portability	Digital Camera with Lens
Quickness	Copy to PC and analysis
Non attached	Position of target marker
Camera Property	
Sensor	12.2 Mpixel CCD
Opening Angle	$67^{\circ} \times 47^{\circ}$
Focal length	17mm
Size / Weight	157x157x86 mm ³ , 2kg

Configuration

Summary

- Field mapping
 - Calculated (B_x, B_y, B_z) map with TOSCA code by H. Sato
 - Ideal field and Various deviations
 - Tracking (3D) from X_t to X_f with Geant 4 code by T. Isobe
 - to be upgraded as :
 - reverse solving method $X_f \rightarrow X_t$
 - Field map measurement parameters
 - pitch 1cm/5cm?
 - important region ?
- Field map measurement
 - Not well determined yet.
 - 2012 summer break is good chance if measurement would be done.
 - After commissioning and first phase experiments
- Device for Accurate position measurement