NEutron-detection system for Breakup of Unstable-Nuclei with Large Acceptance (NEBULA) + γ Detector

Takashi Nakamura^{1,2} Yosuke Kondo^{1,2} Yosuke Kawada ^{1,2} Takayuki Sako ^{1,2} Nobuyuki Kobayashi ^{1,2} Ryuki Tanaka^{1,2} Yoshiteru Satou ^{2,3}

- 1. Tokyo Institute of Technology
- 2. RIKEN Nishina Center
- 3. Seoul National University

Physics Outline - Invariant-mass spectroscopy of neutron-rich nuclei

<u>Neutron Measurement in heavy-ion collisions (EOS \rightarrow Murakami/Lynch/Isobe)</u>

Contents

- Physics Outline (Details presented tomorrow)
- Requirements for NEBULA
- Detector Specification
- Current Status
- Schedule
- Outlook

Typical Experimental Setup

Features (Requirements) of NEBULA NEutron-detection system for Breakup of Unstable-Nuclei with Large Acceptance

Measure Four-Momentum Vectors of Fast Neutrons

100-300MeV

• <u>Large Acceptance</u> 50% at $E_{rel} = 8 MeV$

 \leftarrow Kinematic focusing

High Intrinsic Detection Efficiency

60% for 1n, 20% for 2n

<u>Good Energy(Erel) Resolution</u>

 ΔE_{rel} 0.3~0.4MeV (FWHM) at E_{rel} =1MeV

 ΔE_{rel} 1 MeV (FWHM) at E_{rel} =8MeV

- <u>Multi Neutron Detection</u> 1n, 2n, 3n, 4n
- Flexibility of setup configuration Acceptance/Resolution/Multi-neutron

Specification of NEBULA (Neutron-detection system for Breakup of Unstable-Nuclei with Large Acceptance)

Full Version

- 240 Neutron counters (60 modules x 4 layers)
- 48 VETO counters (12modules x 4 layers)

Half Version (Current Version)

- 120 Neutron counters
 (60 modules x 2 layers or 30 modules x 4 layers)
- 48 VETO counters (12modules x 2 layers)

NEBULA

(Neutron-detection system for Breakup of Unstable-Nuclei with Large Acceptance)

Acceptance

Intrinsic Efficiency (1n detection)

Exclusion of Cross Talk Events for 2n or more neutron detections

 E_{th} =5MeVee to avoid any gamma related events

Different Wall Setting (Simulation) → Nearly perfect rejection of crosstalk events

Need of veto for each wall:

For high energy neutrons > 200MeV To remove cross-talks from recoil protons

Energy Resolution

 $\sigma_y = 3cm$ $\sigma_t = 0.1ns$ $\frac{\sigma(P_{30})}{P_{30}} = \frac{1}{700}$

ELECTRONICS

Current Status and Schedule

Half of the neutron detector modules(120)
 +Full Veto Modules (48) are funded

For the funded part,

- <u>Plastic Scintillators+PMT's</u> have been delivered to RIBF and installed to the frame
- Part of the Electronics modules have been delivered, and the remaining will be delivered by the middle of 2011
- Test Experiments with Cosmic Rays have been started.
- <u>Test experiment (p</u>,Ar@250-400MeV) has been proposed at HIMAC; To test NEBULA detectors with HI beams in 2011 ⁷Li(p,n)⁷Be,π⁰→γ+γ (Establish slew correction, TOF calibration)

Photo

Off-Line Test Experiments Using Cosmic Rays

- Check Basic Functions of Plastic Scintillators, PMT's, Electronics
- Check Timing Resolution
- Check Position Resolution

Movie "NEBULA with Cosmic Ray" by Takayuki Sako(佐古貴行)

First Result from Cosmic Ray Measurement Yosuke Kawada(河田鷹介), Takayuki Sako(佐古貴行)

Neut:30 modules Veto:6 modules $M \ge 3$

Budget Summary (current half version)

Items	kJPY (~12USD)
Scintillators	36,287
PMT, Light Guide, inc. fabrication	48,440
Electronics	50,810
Cables, Delay-Attenuator Boxes	30,000
VME Controllers	1,680
Sum	167,217

1.67oku-JPY ~2M USD

Future Issues

- Other half of Neutron detectors
- High efficiency Gamma ray detectors
- Next Generation Neutron Detectors for multi-neutron detection
- Collaboration

NEBULA Collaboration Tokyo Tech. T.Nakamura, Y.Kondo, Y.Kawada, T.Sako, R.Tanaka, N. Kobayashi Seoul N. Univ. Y.Satou Possible Collaboration CNS, LPC-CAEN, GSI, MSU

Need of Gamma ray detection

Core fragment could be in the excited state \rightarrow Emit γ rays

182 Nal detectors Efficiency : 26% @ 0.7MeV Energy resolution: 11% @ 0.7MeV (FWHM)

DALI2 → Efficiency Low

<u>Issues</u>

Choice of Configuration and **Crystal** PMT or APD? (Magnetic fringing field) Consider (gamma,gamma') type experiment. Funding

	Density (g/cm ³)	Ref. index	Rad. Length (cm)	Decay Const. (ns)	Light Yield(%) Nal(TI)	Peak wave length (nm)	Hygro- scopic
Nal(TI)	3.67	1.85	2.59	230	100	415	Yes
CsI(TI)	4.51	1.75	1.86	1000	85	565	Weak
LaBr3	5.1	1.9	1.77	16	160	380	Yes
GSO	6.7	1.87	1.38	50-60	11-18	350	No
BGO	7.13	2.15	1.10	300	10-14	480	No
LYSO	7.3	1.82	1.82	40-44	20-30	375	No

How about BGO?

If all the NaI(TI) crystals of DALI2 are replaced by BGO crystals... (resolution is not considered)

1 MeV γ ray (50000 events) 1.5 MeV γ ray (50000 events) 3500 14%**→39%** 19%→47% 2000 3000 1750 BGO efficiency: 39% 1500 2500 BGO efficiency: 47% counts counts 1250 2000 1000 Nal efficiency: 14% 1500 Nal efficiency: 19% 750 1000 500 500 250 0 0 1000 2000 3000 1000 2000 3000 0 γ-ray spectrum (keV) γ-ray spectrum (keV)

250 MeV ³¹Ne beam on 3.37g/cm² Pb

By Nobuyuki Kobayashi (小林信之) (GEANT4, coded by Pieter Doornenbal)

Summary

- Half of NEBULA has been funded:
- All the Scintillators+PMT (Half version) are delivered.
- Off-line measurement of cosmic rays have been started.
- 2011: Remaining electronics will be delivered. Test experiment at HIMAC (before summer)
- 2012: Commissioning experiment
- 2012: Day-1 experiment
- The other half?
- We have started consideration for the gamma-ray arrays
- Next Generation Neutron Detectors (R.Tanaka 田中隆己)