Soft Dipole Mode in Ca & Ni Regions

T. Kobayashi (Tohoku Univ.)

* Giant Dipole Resonance

* Collective excitation : ~ oscillation of neutrons against protons

* Soft Dipole (Pygmy) Mode

for nuclei with isospin asymmetry, with extra neutrons response at energy below GDR

~ oscillation of extra neutrons against the core

*Light halo nuclei : ¹¹Li, ¹¹Be, ¹⁴Be, ¹⁹C...

single-particle nature via electromagnetic excitation

* Heavier neutron-rich nuclei

collective excitation via EM excitation

* EM excitation exp. at LAND/GSI (2005), ¹²⁹⁻¹³²Sn @500MeV/A

* Low-lying strength i.e. soft (Pygmy) dipole mode observed at Ex ~ 10MeV few % of TRK sum rule * strength related to evolution of neutron skin symmetry energy

followup exp's @GSI

⁶⁸Ni / RISING : published

-72Ni / LAND : under analysis

* Purposes :

* collective excitation of soft dipole mode in Ni & Ca regions

* performance of the spectrometer system up to $A \sim 80$ (z~28)

0. L

5

10

15

E_gamma [MeV]

20

25

30

* using "mixed" beam

* Sn < Ex < S3n by detecting 1n & 2n

3-1. Experimental Setup @ spring 2012

* detector debugging for z~20

*⁴⁶Ar (>1MHz), ⁴⁸Ar (~0.1KHz), ⁵⁰Ca (~1kHz) <-- ⁴⁸Ca @350MeV/A(200pnA)

*data taking, @250MeV/A

production target: Be 2.0 g/cm², degrader: 3mm

45Ar	46Ar	47Ar	48Ar	49Ar	50Ar
20	110	110	40	9	1
50Ca	51Ca	52Ca	53Ca	54Ca	55Ca
350	1070	730	180	30	3

<-- 350MeV/A ⁸²Se (30pnA)

72Ni	73Ni	74Ni	75Ni	76Ni	77Ni
46	123	66	21	4.3	0.5

<-- 350MeV/A 86Kr (30pnA)

mixed mode :

total rate <~10kHz also important for stability monitor of Csl * Soft dipole mode (assumption)

<pre>* strength :</pre>	5% of TRK sum rule		
<pre>* excitation energy :</pre>	Ex ~6 MeV (Ca), ~9 MeV (Ni)		
* Excitation cross section :	~0.5 b (Ca), 0.2b (Ni)		
* Neutron detection eff. :	~40 % (Ca), ~36% (Ni)		
*Target :	Pb: 1 g/cm ² ($\theta_{MCS} \sim 4 \text{ mrad}$),	C: 2 g/cm ²	
* Yield :	~84/h (⁴⁸ Ar), ~50/h (⁷⁴ Ni)		
*Total=5K events :	2.5 days (Ar/Ca), 4.2 days (Ni)		
	1.1 Kevt (⁴⁹ Ar), 0.3 Kevt (⁷⁶ Ni)		

* (+ part of normal GDR)

* + C & empty (estimation not final) :

~ 5-6 days (Ca/Ar), ~ 8-9 days (Ni)

* "Mixed" beam closed circles : can be measured in one setting

* interaction cross section measurement : possible with the same setup

4. Summary

* Electromagnetic excitation/breakup for soft dipole mode in Ca & Ni regions experimental conditions : estimated "mixed" beam experiment like to have more beams ⁸²Se: or better primary for Ca regions more intensity for ⁸⁶Kr range: 50-54(55)Ca, 72-75(76)Ni * better with other information interaction cross section measurement : possible with the same setup * Extraction of information

symmetry energy ?