Invariant-mass spectroscopy of unbound nuclei using SAMURAI

Y. Kondo (Tokyo Tech)

Contents

- Motivation
 - Investigation of Shell evolution in extremely neutron-rich region
 - Study of Borromean nucleus
- Experimental method
 - Invariant mass method
 - Reaction
 - Setup

Shell evolution towards the drip line

- Appearance/disappearance of magic number
 - Shell evolution
 - Spectroscopy of n-rich nuclei towards the drip line

Spectroscopy of unbound nuclei \rightarrow shell changing in extremely neutron-rich region

Shell evolution towards the drip line

- Appearance/disappearance of magic number
 - Shell evolution
 - Spectroscopy of n-rich nuclei towards the drip line

Spectroscopy of unbound nuclei \rightarrow shell changing in extremely neutron-rich region

Three body structure of Borromean nuclei

Borromean nuclei (⁶He, ¹¹Li, ...)

Three body system (core +n+n) with no bound binary sub-systems (core+n, n+n)

- <u>Di-neutron correlation</u>? (⁶He, ¹¹Li)
 - dB(E1)/dE strength of a Borromean nucleus
 - Three body model theory
 - Interaction of core+n sub-system is needed

→ Coulomb breakup of a Borromean nucleus + spectroscopy of core+n sub-system

Three body structure of Borromean nuclei

Borromean nuclei (⁶He, ¹¹Li, ...)

Three body system (core +n+n) with no bound binary sub-systems (core+n, n+n)

- <u>Di-neutron correlation</u>? (⁶He, ¹¹Li)
 - dB(E1)/dE strength of a Borromean nucleus
 - Three body model theory
 - Interaction of core+n sub-system is needed

→ Coulomb breakup of a Borromean nucleus + spectroscopy of core+n sub-system

Invariant-mass method

Invariant mass

Merit of the invariant mass method

- Good energy resolution (ΔE_{rel} =0.4MeV @1MeV)
- E_{rel} resolution is independent on the beam profile
- Thick target (a few g/cm²) can be used
 - High statistics

Invariant-mass method is powerful tool

for spectroscopic study using RI beam (large emittance and low intensity)

How to produce unbound nuclei?

- 1. one-proton removal reaction
 - useful to access very neutron-rich nucleus
 - population of ground state is favored (x neutron-hole configuration)

2. one-neutron removal reaction

- ground & excited states are populated (o neutron-hole configuration)
- momentum distribution is useful to deduce neutron orbit
- beam intensity is weak (compared with -1p reaction)
- should pay attention to the two neutron decay following inelastic scattering of a beam nucleus ^{A+1}Z
 - e.g. ¹³Be case Y. Kondo et al. PLB690, 245, (2010)
 - − ¹⁴Be -1n \rightarrow ¹³Be \rightarrow ¹²Be+n
 - − ¹⁴Be inelastic \rightarrow ¹⁴Be* \rightarrow ¹²Be+n(+n) this made mimic peak in the spectrum

3. two-proton removal reaction

- cross section is one order of magnitude less than that of -1p reaction
- Beam intensity is one order of magnitude larger than that of -1p reaction
 - \rightarrow statistics of reaction yield is comparable to the -1p reaction
- less selection rule? (compared with -1p reaction)
 - ground & excited states are expected to be populated

Typical experimental setup using SAMURAI

Invariant-mass spectroscopy of unbound states studied using <u>RIPS</u>

• Our spectroscopic studies of unbound states are limited to p-/sd-shell nuclei

Invariant-mass spectroscopy of unbound states studied using <u>SAMURAI</u>

 We can study more neutron-rich nuclei located beyond the drip line.

Summary

- Invariant-mass spectroscopy of unbound nuclei using SAMURAI
 - Shell evolution near/beyond neutron drip line
 - Borromean three body system
- Experimental setup
 - Same as the (γ, n) type experiment

