

Location of the Neutron Dripline at Fluorine and Neon

DeukSoon AHN

* BigRIPS team, Research Instruments Group, Nishina Center for Accelerator-Based Science, RIKEN

2020.1.14

Introduction

- Status of neutron dripline
 - Nuclear structures
- Predictions of neutron dripline with mass models
- F/Ne dripline experiment (2014 experiment)

 A search for ^{32,33}F, ^{35,36}Ne, ^{38,39}Na using a ⁴⁸Ca beam

 ³⁹Na experiment (2017 follow-up experiment)
 - Summary & Future prospect

Introduction

- Status of neutron dripline
- Nuclear structures
- Predictions of neutron dripline with mass models

Where is neutron dripline? - challenging for limit of nuclear landscape

Binding energy

- Deformation
- Shell evolution
- Nucleon-nucleon interaction
- Three nucleon force
- Tensor force
- Nuclear mass models

A nucleus with a set number of protons, there is a limit to how many neutrons can be added.

: limit of bound nuclei

Status of neutron dripline

The neutron dripline has been experimentally established up to oxygen. (20 years ago)

Non-existence of ²⁶O and ²⁸O

D. Guillemaud-Mueller et al., PRC 41,937 (1990)

H. Sakurai *et al.*, PLB 448, 180 (1999)

The 285th RIBF Nuclear Physics Seminar

Neutron dripline search using a ⁴⁸Ca beam

1) Discovery of ³¹F, ³⁴Ne, ³⁷Na, ⁴³Si @RIKEN

2) Discovery of ⁴⁴Si @MSU

H. Sakurai et al., PLB 448, 180 (1999) \rightarrow ³¹F

The 285th RIBF Nuclear Physics Seminar

Evolution towards the neutron dripline

Mass measurement, 1n(2n) removal reactions

Direct mass measurement: specific behaviors for magic or deformed

1n(or 2n) removal cross section and momentum distribution

: existence of a deformed halo structure

T. Nakamura et al., Phys. Rev. Lett. 103, 262501(2009) :³¹Ne

T. Nakamura et al., Phys. Rev. Lett. 112, 142501(2014) :³¹Ne

N. Kobayashi et al., Phys. Rev. Lett. 112, 242501(2014) :³⁷Mg

N. Kobayashi et al., Phys. Rev. C 93, 014613(2016) :²⁹Ne

Interaction cross sections

Enhanced if deformation or halo exist

²⁹Ne and ³¹Ne

M. Takechi et al., PLB 707, 357 (2012)

→ Large enhancements of σ_1 for ²⁹Ne and ³¹Ne

²⁹Ne, ³¹Ne : deformed halo

²²⁻³⁵Na

T. Suzuki et al., EPJ Conf.66 (2014)

→ Deformation tends to be larger for Na isotopes with larger mass numbers

→ Deformation keeps large up to N=28.

³⁷Mg: deformed halo

Excitation energy of 2+ and 4+ states in even-even nuclei

 \rightarrow Energy level systematics of the odd–even nuclei

Prediction of neutron dripline

The neutron dripline is important

- to verify the mass models
- to understand nuclear structures and astrophysical reactions

 \rightarrow The various mass models cannot accurately predict the neutron dripline.

Na

Recent ab-initio calculations

Calculated probabilities for low Z nuclei

https://arxiv.org/abs/1905.10475

Issues with neutron-rich O and N isotopes

Reproduces well the experimental results (this work & ⁶⁰Ca experiment)

Search for Fluorine and Neon dripline

→ A search for the heaviest new isotopes of fluorine, neon and sodium: 32,33 F, 35,36 Ne and 38,39 Na was conducted by fragmentation of an intense 48 Ca beam with 20mm-thick beryllium target at 345 MeV/nucleon

F/Ne dripline experiment (2014 experiment)

A search for ^{32,33}F, ^{35,36}Ne, ^{38,39}Na using a ⁴⁸Ca beam

- High intensity primary beam
- Good separation and Good transmission
 - Cross sections are too small.
 - Improving the capability of BigRIPS separator
 - High counting rate : collimator to reject the light particles (Tritons)

Unambiguous PID

- Excellent particle Identification
- Removal of background events

Beam intensity of RIBF

345 MeV/u 48Ca beam,From Accelerator Group~450 pnA @2014 experiment(Courtesy of N. Fukunishi)

- Maximum energy is 345 MeV/nucleon for heavy ions up to ²³⁸U ions
- Beam intensities increase in every year.
- Goal intensity is 1 pµA for all ions.

RIKEN BigRIPS

RIKEN RIPS

Experimental setup and particle identification

BigRIPS in-flight separator :

- large acceptances
- Two-staged separator scheme

	³³ F Setting	³⁶ Ne + ³⁹ Na Setting
Primary beam	⁴⁸ Ca	⁴⁸ Ca
Target	⁹ Be 20 mm	⁹ Be 20 mm
Tuned for	³³ F	Center for ³⁶ Ne + ³⁹ Na
Βρ (at D1)	9.385 Tm	9.385 Tm
F1 degrader	Al 15 mm (d/R=0.17)	Al 15 mm (d/R=0.18)
F5 degrader	Al 7 mm	Al 7 mm
Beam intensity	429 pnA	448 pnA
Data accumulation	14.8 hours	7.77 hours

Momentum distributions

³³F setting

D1 => BrhoPlot ⁴⁸Ca (345 MeV/u) + Be (20 mm); Settings on ³¹Ne^{10+,10+}; Config: DSSSA dp/p=11.21% ; Brho(Tm); 9.3850

³⁶Ne + ³⁹Na setting

→ The LISE⁺⁺ simulations were confirmed trajectories.
 → The calculated transmission is good.

F2x

Ne

Plot

Particle identification

The 285th RIBF Nuclear Physics Seminar

DeukSoon AHN, 2020. 1. 14

^{32,33}F, ^{35,36}Ne , ³⁸Na

Systematic measurement of production cross sections

Cross sections evaluation with EPAX2.15 and Q_g systematics
 Expectation yields

$$N_{f} = \boldsymbol{\sigma} \times (N_{beam} \times N_{target} \times \epsilon_{tran.} \times \epsilon_{BG} \times \epsilon_{live})$$

Probability (Zero-event probability)

$$P(k|\lambda) = \lambda^{k} e^{-\lambda} / k! \xrightarrow{k=0} P(0|\lambda) = e^{-\lambda}$$
(Poisson distribution) λ : expected yield

 $\sigma : \text{Cross section}$ $N_f : \text{Number of fragments}$ $N_{beam} : \text{Beam Dose}$ $N_{target} : \text{Number of target atoms}$ $\epsilon_{tran.} : \text{Transmission}$ $\epsilon_{BG} : \text{Efficiency for lost events}$ $\epsilon_{live} : \text{Efficiency of DAQ live time}$

- Q_g : Difference in mass excess of the beam particle and observed fragments
 - = $\Delta M_{\rm P} \Delta M_{\rm F}$ = Mass Excess(20,48) – Mass Excess(Z,A)

\rightarrow Q_g systematics is useful to estimate yields of drip-line nuclei.

Qg systematics fitting

- * Assume the $\rm S_{1n}=0$ for $^{32}\rm F$ and $^{35}\rm Ne$
- * Assume the S_{2n}=0 for ³³F and ³⁶Ne

Probability of instability

Zero-event probability(P) obtained from the expected yield and poisson distribution.
 Comparison with predicted yields excludes the existence of these unobserved isotopes with high confidence levels

The neutron dripline has been confirmed up to neon for the first time since ²⁴O was confirmed to be the dripline nucleus nearly 20 years ago.
 The observation of one event for ³⁹Na seems to suggest the existence of bound ³⁹Na.

Opper limits of half-lives

Observation limit of 1 count

lsotope	Setting	Method	Expected counts	TOF (ns)	T1/2_upper (ns)
³² F	³³ F	EPAX 2.15	323.0	421.5	50.6
		Qg	1140.0	421.5	41.5
³³ F	³³ F	EPAX 2.15	22.0	429.6	96.3
		Qg	106.0	429.6	63.9
³⁵ Ne	³³ F	EPAX 2.15	177.0	417.4	55.9
		Qg	69.1	417.4	68.3
³⁶ Ne	³³ F	EPAX 2.15	8.4	424.6	138.3
		Qg	2.7	424.6	293.0
³⁶ Ne	³⁶ Ne+ ³⁹ Na	EPAX 2.15	7.1	427.3	151.1
		Qg	2.3	427.3	355.6
³⁸ Na	³⁶ Ne+ ³⁹ Na	EPAX 2.15	61.9	416.6	70.0

Location of the neutron dripline for F and Ne

PHYSICAL REVIEW LETTERS 123, 212501 (2019)

Editors' Suggestion

Featured in Physics

Location of the Neutron Dripline at Fluorine and Neon

D. S. Ahn,¹ N. Fukuda,¹ H. Geissel,⁵ N. Inabe,¹ N. Iwasa,⁴ T. Kubo,^{1,*,†} K. Kusaka,¹ D. J. Morrissey,⁶ D. Murai,³ T. Nakamura,² M. Ohtake,¹ H. Otsu,¹ H. Sato,¹ B. M. Sherrill,⁶ Y. Shimizu,¹ H. Suzuki,¹ H. Takeda,¹ O. B. Tarasov,⁶ H. Ueno,¹ Y. Yanagisawa,¹ and K. Yoshida¹
¹*RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ²Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan ³Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan ⁴Department of Physics, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan ⁵GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany ⁶National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824, USA*

(Received 28 March 2019; published 18 November 2019)

The 285th RIBF Nuclear Physics Seminar

https://physics.aps.org/articles/v12/126

SCIENCE 11.22.2019 00:00 AM

SOPHIA CHEN

https://physicsworld.com/a/neutron-dripline-extended-to-fluorine-and-neon-isotopes/ https://www.wired.com/story/what-makes-an-element-the-frankenstein-of-sodium-holds-clues/ 科学新聞(2019.12.13) WIRED

STGN TN

SUBSCRIBE

Viewpoint: Reaching the Limits of Nuclear Existence

Artemis Spyrou, Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA November 18, 2019 • Physics 12, 126

Researchers have identified the largest possible isotopes of fluorine and neon, extending the neutron	'dripline'
for the first time in 20 years.	

Figure 1: Researchers have mapped the boundary (green line) that charts the heaviest possible isotopes of fluorine (F) and neon (Ne). Previously this so-called neutron dripline was known only for the first eight elements of the periodic table (pink line).

physicsworld Q Ξ Magazine | Latest - | People - | Impact (b nuclear physics

- f NUCLEAR PHYSICS | RESEARCH UPDATE
 - Neutron dripline extended to fluorine and neon isotopes 21 Nov 2019 Hamish Johnstor
- 8

y

Dripline: how many neutrons can you pack into a nucleus? (Courtesy: iStock/Altayb

What Makes an Element? The Frankenstein of Sodium Holds Clues

BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY MORE V

By crafting massive versions of sodium, neon, and other elements, physicists are testing what's possible-and impossible-in nature.

The 285th RIBF Nuclear Physics Seminar

DeukSoon AHN, 2020. 1. 14

³⁹Na experiment (2017 follow-up experiment)

2017 follow-up experiment

- The neutron dripline has been experimentally established up to neon.
- The heaviest bound nuclei for Na isotopes confirmed so far ³⁷Na. One event for ³⁹Na.

Neutron number N

Follow-up experiment, which was conducted to confirm the ³⁹Na event
 Search the existence of ³⁹Na: Nuclear binding of ³⁹Na (2days experiment)
 High statistics data of ³⁶Ne to confirm the dripline of Ne (1day experiment)

Comparison of 2014 and 2017 experiment

	isotope	2014 experiment	2017 experiment	
Βρ ₀₁ [Tm]	³⁹ Na	9.3850 Tm (+/- 3%), high momentum sic	de 9.1550 Tm (+/- 3%), momentum peak	
Distribution	³⁶ Ne	9.3850 Tm (+/- 3%), momentum peak $1^{10^{2}}$ 9.385 Tm \pm 3% $3^{10^{3}}$ 3^{3} F 3^{9} Na 3^{3} F 3^{9} Na 3^{3} F	9.4077 Tm (+/- 3%), momentum peak	
F2 slit		+/- 15 mm (H)	+/- 8.3 mm (H), +/-20 mm(V)	
F2 collimator	X Y	F3 t F3 t F3 t F3 t F3 t F3 t F3 t F3 t	total counting rate: $\sim 10^6 \rightarrow \sim 10^4$ pps Removable type Taper-shaped type SUS + Fe blocks + W slits Hori : +/-23.8 (up), +/-13.8(down) Vert: +/-33.2(up), +/-18.2(down)	
F7 (dE)		IC, Si	Si	
Irr. Time (h) Dose, Intensity	³⁹ Na	³⁹ Na+ ³⁶ Ne setting: 7.77 h 7.80E+16, 448 pnA		
	³⁶ Ne	³⁹ Na+ ³⁶ Ne setting: 7.77 h 7.80E+16, 448 pnA ³³ F setting: 14.18 h 1.37E+17, 429 pnA		

The 285th RIBF Nuclear Physics Seminar

DeukSoon AHN, 2020. 1. 14

D.S. Ahn, T. Kubo, N. Fukuda, H. Suzuki, Y. Shimizu, H. Takeda, T. Sumikama, H. Ueno, K. Yoshida, N. Inabe, H. Sato, H. Baba, T. Komatsubara, Y. Yanagisawa, K. Kusaka, M. Ohtake, H. Otsu

T. Nakamura

Tokyo Tech

O. B. Tarasov, D. J. Morrissey, B. M. Sherrill, D. Bazin

N. Iwasa, S. Ishikawa, T. Sakakibara

J. Amano

H. Geissel

Summary & Future prospect

- A search for the heaviest new isotopes of fluorine, neon and sodium (^{32,33}F, ^{35,36}Ne, ^{38,39}Na) was conducted by fragmentation of an intense ⁴⁸Ca beam at 345 MeV/nucleon.
- No events were observed for ^{32,33}F, ^{35,36}Ne, ³⁸Na and only one event for ³⁹Na after extensive running. → The neutron dripline has been confirmed up to neon for the first time since ²⁴O was confirmed to be the dripline nucleus nearly 20 years ago.
- No observation of ³⁶Ne nuclei in the high-statistics measurement confirming the 2014 experiment. → Confirmation of ³⁶Ne is unbound with higher confidence level
- The observation of ³⁹Na
 - 2014 experiment (1 event) \rightarrow It seems to suggest the existence of bound ³⁹Na.

The various mass models cannot accurately predict the neutron dripline.

These results provide new keys to understanding the nuclear stability at extremely neutron-rich conditions.

Locating the neutron dripline continues to be an important challenge for new-generation facilities and the neutron-dripline search will continue to play an important role in the nuclear structure at extremely neutron-rich conditions.

These results provide a key benchmark for nuclear mass and structure models.

Development of much more primary beam species are necessary to expand the nuclear chart.