Mini-FoCAL Discussion with Tsukuba Group

RIKEN/RBRC

Itaru Nakagawa

mini-FoCal in ALICE (2018)

Hit Map of mini-FoCal in ALICE Layer 2

Cluster spectrum

Cluster multiplicity:

full acceptance

 $3.7 < \eta < 3.9$ $3.9 < \eta < 4.1$

 $4.1 < \eta < 4.3$

 $4.3 < \eta < 4.5$

10

10-1

10-2

SRS system under the table

Goal: measure/verify backgrounds in situ with p+p @ \sqrt{s} = 13 TeV collisions in ALICE

- Calibration based on test beam
- Comparison to MC (cluster spectrum, slid lines)

.≥

Acceptance

A design of the FoCal-E pad detector

A tower of the FoCal-E pad detector prototype, called "mini-FoCal", has 20 silicon-pad layers with Tungsten alloy plates. The front-end electronics would be attached on the top side of the tower.

P.3 of 25

A new Si-pad sensor

P.5 of 25

Mini-FoCAL

Readout from the top

A design of the FoCal-E pad detector

A tower of the FoCal-E pad detector prototype, called "mini-FoCal", has 20 silicon-pad layers with Tungsten alloy plates. The front-end electronics would be attached on the top side of the tower.

P.3 of 25

Can we reuse Mini-FoCAL for RHICf-II?

Need to align mini-FoCAL vertically to fit in the ZDC space

Difficulties to customize mini-FoCAL?

Customizing the mini-Focal to fit-in ZDC space at RHIC

- Cut Tungsten plates into 10cm x 10cm pieces
- Disassemble silicon pads and tungsten plates by resolving glue
- New frame structure to assemble the 10cm x 10cm tower

These are already big deal and risky operation. Not sure if we can take advantage of reuse of mini-FoCAL.

Alternative Solution ~Next Round Prototyping

Module:

- 5 Si (individual wafer)
- 9x8 per sensor 1 cm² design
- 360 channel/module = 5 HGCROC

Cost: 2000kCHF PAD, 550kCHF ROC

Prototype is to be made in 2020 (~ 2021)?

Readout from the side

Looks like this fits better as RHICf-II

Acceptance Gain Compared to RHICf

 \rightarrow Series of dedicated position measurement becomes one shot measurement!

π^0 Asymmetry Preliminary Results

RHICf vs FoCAL Summary

	RHICf	FoCAL Prototype
Acceptance	4cm x 4cm + 2cm x 2cm	8cm x 9cm x 2 units
Radiation Length	44X ₀	20X ₀
Interaction Length	1.6 λ_{int}	$\sim 0.8 \lambda_{int}$?
Position Layer Resolution	100µm	~10µm?
Energy Resolution	<3%	3.6%
Position Detector	GSO-bar	MAPS(Under development)
Arm1 calorimeter	cope RHICf	2 3 4 5 LG layer HG layer FoCAL 13

Production Cost

	Unit price / layer	Per Module
Silicon Pads	95,000 JPY	
Tungsten	110,000 JPY	

Summary

- Mini-FoCAL prototype detector is available in Tsukuba, but it is not feasible to reuse for RHIC—II running.
- Post mini-FoCAL prototype which is under development fits nicely to large acceptance RHICf-II demand without interference with beam pipe.
- Statistical advantage of FoCAL prototype is significant.
- Position detector MAPS is underdevelopment as of now? Can it be in time for RHICf-II run?