ALICE-FoCal discussion

RBRC exp group meeting February 12th, 2020 Yuji Goto

Motivations

- We're proposing EIC detector R&D for position sensitive ZDC.
 - It serves critical roles for a number of important physics topics at EIC.
 - ALICE-FoCal is one promising technology.
- We're discussing RHICf upgrade.
 - ALICE-FoCal prototype detector would be one promising choice to be used in the next RHICf experiment in a timely manner.

EIC detector R&D for position sensitive ZDC

- Letter of intent submitted in January
 - Japanese group
 - RIKEN, Nagoya Univ., ICRR, Kobe Univ., Tsukuba Univ., Tokyo Tech., Nihon Univ., Yamagata Univ., JAEA
 - US group
 - BNL, Univ. of Kansas
- Proposal to be submitted in July
- Discussing with
 - Participants in Joint CFNS & RBRC workshop on "Physics and detector requirements at zero-degree of colliders"
 - Stony Brook Univ.
 - Follow-up meeting to be held

EIC detector R&D for position sensitive ZDC

- Full-absorption photon detector
 - Crystal scintillators
- Prototype study of ZDC with position sensitivity
 - EM + Hadron calorimeters
 - ALICE-FoCal / RHICf technology / ...
- Radiation hardness study for new technology
 - Plastic scintillators

Physics topics at EIC zero degree

- Diffractive process in e + A collisions
 - Breakup of the excited nucleus
 - Exclusive vector meson production
 - Event-by-event characterization of collision geometry
 - Study of nuclear medium effects
- Spectator tagging in e + d / ³He collisions
 - Neutron structure
 - Spin structure, S & D waves
 - Neutron interactions
 - Short-range correlation (SRC) and EMC effect at large x
 - Diffraction and shadowing at small x
- Leading baryons
- Asymmetries at zero degree
- Spectroscopy
- Isotope tagging for nuclear fragments
- Relation to cosmic-ray physics
 - Understanding hadronization
 - Cosmic-ray acceleration in blazars

Physics at zero degree of EIC

ZDC requirements

- Position resolution
 - 1 cm position resolution \rightarrow 300 μrad angular resolution
 - \rightarrow 30 MeV p_{τ} resolution for 100 GeV spectator neutron
- Energy resolution
 - Minimum requirement $\Delta E/E = 50\%/\sqrt{E}$ (GeV)
 - \rightarrow 50 MeV p_{τ} resolution for 100 GeV spectator neutron
- Position layers (or Shower Max Detector)

	Plastic fiber	Crystal bar	Quartz fiber	Silicon	
Source	Scintil	lation	Cherenkov		
Signal	good	good	weak	good	
Rad Hardness	poor	ОК	excellent	ОК	
Cost	\$	\$\$	\$\$	\$\$\$	
Position Resolution	good	good	poor	best	
Large acceptance	ОК	position dependent	ОК	ОК	

February 10, 2020

RHICf upgrade

- RHICf physics
 - Cosmic ray / neutrino physics
 - Shower evolution
 - Very forward asymmetries of neutron, π^0 , ...
- RHICf upgrade
 - p + Light-A and/or Light-A + Light-A collisions
 - K⁰_s at zero degree
 - As wide acceptance as possible
 - 2022 run at STAR and/or 2024 run at sPHENIX / STAR

• 2020.1.14 ALICE internal review @ CERN

FoCal

- active R&D since ~2010
- proposed as an ALICE upgrade for LS3
- first version of Lol public
 - some updates during this review
- potential submission to LHCC in February
 - review as input for decision taking in ALICE
- if approved by ALICE and endorsed by LHCC
 - preparation of TDR by end of 2021

FoCal - main components 3

Pads

1 layer = 5 towers design, and silicon sensor (8 x 9 cells)

Total number of modules: 11 x 2 = 22 modules
Total number of Pad layers: 22 x 18 = 396 layers
Total number of towers : 22 x 5 = 110 towers

- 4) Total number of silicon sensors: $396 \times 5 = 1,980$ sensors
- 5) Total number of readout ch.: $(8 \times 9) \times 1,980 = 142,560$ ch

+396 FEE PCB, 180 aggregator boards, 8 CRU

HCal: ~2K channels

Timescale till Run-4 8

	2019	2020	2021		2022	2023	2024	2025	2026	2027
	Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4					
LHC		LS2		Run-3	3			LS3		Run-4
Lol										
R&D										
Test beam										
TDR										
Final design										
Production, construction, test of module										
Pre-assembly, calibration with test beam										
Installation and commissioning										
Physics data taking										

1 mm

The design of the detector:

- 20 layers: W (3.5mm ≈ 1 X₀) + Si-sensors (2 types):
 - low granularity (LG), Si-pads
 - high granularity (HG), pixels (e.g. CMOS-MAPS)
- Moliere radius $\sim 1\text{-}2~cm$

The surface area of the detector will be about 1 m²

Norbert Novitzky

CFNS&RBRC workshop

ALIC

mini-FoCal at PS and SPS (2018)

"mini-FoCal" has been built in Tsukuba, and shipped to CERN for test beam and ALICE test in 2018 APV25 hybrid + SRS for readout

mini-FoCal in ALICE (2018)

4. Timescale and cost Pad (short term, 2020-2021)

			2020	2021
Compone	en Description	Taget	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Pad 01	Silicon sensor design	Q1/20		
Pad 01	New mask for silicon sensor	Q2/20		
Pad 01	Test production	Q4/20		
Pad 02	Prototype board design	Q2/20		
Pad 02	Test board production	Q3/20		
Pad 02	Test board assembly	Q4/20		
Pad 02	Firmware for readout	Q4/20		
Pad 02	Integration and module test	Q4/20		
Pad 02	ELPH beam test	Q1/21		
Pad 03	Conceptual design mechanics and cooling	Q1/20		
Pad 03	Cooling test for readout board	Q3/20		
Pad 03	Materials for PM available	Q4/20		
Pad 04	LV power infrastructure conceptual design	Q3/21		
Pad 05	HV prototype qualification for PM	Q3/20		
Pad 05	HV infrastructure conceptual design	Q3/21		
Pad 07	Readout receiver/ FLP prototype	Q4/20		
	CERN test beam	Q2/21		
	TDR	Q3/21		
	Final design	Q4/21		

	[PM] : Prototype Module
Pad 01	sensor specification
Pad 02	readout board design (and connection)
Pad 03	module mechanical design and cooling
Pad 04	LV power infrastracture
Pad 05	HV for sensors
Pad 06	QA performance, componets and system test
Pad 07	FLP/EPN connections and software
Pad08	DCS/controls

- For RHICf upgrade (2022 or 2024)
 - Space restriction at RHICf
 - FoCal prototype with new readout scheme for RHICf?
 - Readout electronics integration to sPHENIX electronics & DAQ system

Module: 18 layers of Pad + 2 layers of MAPS

ZDC at LHC

- ATLAS & CMS ZDC
 - W-quartz sampling calorimeter

JZCaP collaboration

- ATLAS + CMS joint R&D effort
- Radiation-hard fused silica rods
- Increasing H₂ concentration

MOTIVATION - RADIATION DAMAGE

• The LHC upgrade during LS3 requires a rearrangement of the beam line.

Less space left for the ZDC (from TAN - 10 cm, to TAXN, 5 cm) —> Narrower ZDC modules for Run4.

► TAXN ~ 15 m closer to the interaction point compared to TAN.

Radiation levels will further increase.

 Fused quartz with high level of impurities inadequate for any pp running and damaged during PbPb running.

RICCARDO LONGO

 Hardening the detector for pp running allows flexibility in installation to accomodate special LHC runs (e.g. 0+0, p+0 in Run3) that take place in the middle of pp running

16

26/09/2019

RHICf experiment

- EM calorimeter (RHICf detector) installed in front of the ZDC+SMD of the STAR experiment
 - Cross section and asymmetry measurement of neutral particle production (neutron, photon, π^0) with $\sqrt{s} = 510$ GeV polarized proton collisions
 - Wide p_{τ} region covered by changing the position of the RHICf detector vertically (up to 1.2 GeV/*c*)
 - Much higher position resolution than ZDC+SMD so that enable us higher resolution of p_T measurement

RHICf detector

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber (44 X₀, 1.6 λ_{int})
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers (MAPMT readout)

Discussions for ALICE-FoCal

- For RHICf upgrade (2024)
 - Space restriction at RHICf
 - Possible new mini-FoCal with new readout scheme for RHICf?
 - Readout electronics integration to sPHENIX electronics & DAQ system

- For ZDC at EIC
 - EM + Hadron calorimeters
 - e.g. 60cm x 60cm

February 10, 2020

Gluon saturation at extreme density

- Diffractive process in e + A collision
 - Rapidity gap & coherent (nucleus remains intact)
- Diffractive cross section
 - First evidence for gluon saturation
- Exclusive vector meson production
 - e + Au \rightarrow e' + Au' + J/ ψ , ϕ , ρ

Gluon saturation at extreme density

- Exclusive vector meson production
 - Momentum transfer *t* dependence translated to the transverse spatial distribution of gluons in the nucleus
 - Incoherent process (nucleus breaks up)
 - Spatial density fluctuation in nucleus
 - Much larger than the coherent process
 - Coherent process (nucleus remains intact)
 - Sensitive to the gluon saturation
 - Identify & veto breakup of the excited nucleus

e + A collision at zero degree

- Breakup of the excited nucleus
 - Evaporated neutrons (& protons)
 - Separate the coherent process ~90%
 - Photons from de-excitation of the excited nucleus
 - Requirement to measure neutrons and photons at zero degree in a wide *t* range
- Event-by-event characterization of collision geometry
 - Tagged through forward neutron multiplicities at zero degree
 - *b*: impact parameter
 - *d*: path length of struck parton in nucleus
 - "centrality" (high d) & "skin" (low d)
 - Study of nuclear medium effects

Intra-nuclear cascading increases with d (forward particle production)

Leads to evaporation of nucleons from excited nucleus (very forward)

e + *d*/³*He* collision at zero degree

- Spectator tagging
 - Neutron structure
 - Neutron spin structure, S & D waves
 - Nucleon interactions
 - Short-range correlation (SRC) and EMC effect at large x
 - Diffraction and shadowing at small x

Detector performance requirements

- Photon detection
 - To identify the nuclear excitation states in addition to the neutron detection
 - Photon energy < 300 MeV
- Full absorption calorimeter, e.g. crystal calorimeter
 - PbWO₄
 - $X_0 = 8.9 \text{ mm}, r_M = 2.2 \text{ cm}, \tau = 25 \text{ nsec}$
 - 5% resolution at 300 MeV
 - LYSO
 - $X_0 = 11.4 \text{ mm}, r_M = 2.1 \text{ cm}, \tau = 40 \text{ nsec}$
 - 2.6% resolution at 300 MeV (SuperB prototype)

ZDC requirements

- Acceptance
 - 25 mrad crossing angle for EIC at BNL
 - Forward magnet aperture ±4 mrad opening angle for ZDC
- Sufficient transverse size to avoid transverse leakage
 - ~2 interaction length
 - e.g. 60cm x 60cm

Other physics

- Asymmetries at zero degree
 - Leading baryons
- Spectroscopy
- Isotope tagging for nuclear fragments
- Relation to cosmic-ray physics
 - Understanding hadronization
 - Cosmic-ray acceleration in blazars

Detector performance requirements

- Radiation hardness
 - $\sim O(100k 1MGy)$ or $n_{eq} = 3 \times 10^{12} 10^{13}$ for 1-year operation
 - $n_{eq} > 10^{14}$ for lifetime
- Silicon and LYSO should be OK for the dose
- Plastic scintillators?
 - Very good resolution for hadrons
 - Good e/h
 - Some plastic like PEN stands for > 0.1 MGy radiation

Collaborators

- Japanese group
 - RIKEN, Nagoya Univ., ICRR, Kobe Univ., Tsukuba Univ., Tokyo Tech., Nihon Univ., Yamagata Univ., JAEA
- US group
 - BNL, Univ. of Kansas
- Discussing with
 - Participants in Joint CFNS & RBRC workshop on "Physics and detector requirements at zero-degree of colliders"
 - Follow-up meeting to be held

Summary

- We'd like to propose EIC R&D of ZDC
 - Full-absorption photon detector
 - Crystal scintillators
 - Prototype study of ZDC with position sensitivity
 - EM + Hadron calorimeters
 - ALICE-FoCal / RHICf technology / ...
 - Radiation hardness study for new technology
 - Plastic scintillators
- Physics at zero degree
 - Diffractive process in e + A collision
 - Breakup of the excited nucleus
 - Event-by-event characterization of collision geometry
 - Spectator taggin in e + d/³He collision
 - Leading baryons and forward asymmetries at zero degree

•

ZDC at RHIC and EIC

- We're proposing EIC R&D of ZDC
 - Full-absorption photon detector
 - Crystal scintillators
 - Prototype study of ZDC with position sensitivity
 - EM + Hadron calorimeters
 - ALICE-FoCal / RHICf technology
 - Radiation hardness study for new technology
 - Plastic scintillators
- We also want RHICf calorimeter upgrade
 - RHICf = LHCf at RHIC
 - 2017 at STAR
 - 2022 at STAR and/or 2024 at sPHENIX
- We want to discuss ALICE-FoCal technology
 - To be applied for EIC R&D and RHICf upgrade

EIC status

- Critical Decision-0 "Approved Mission Need" for the EIC on December 19, 2019
- Selection of Brookhaven National Laboratory as the site for the EIC on January 9, 2020

2020/1/13 U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility | Department of En.

2020/1/13

Department of Energy Selects Site for Electron-Ion Collider | BNL Newsroon

Contact: Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174

Department of Energy Selects Site for Electron-Ion Collider

New facility to be located at Brookhaven Lab will allow scientists from across the nation and around the globe to peer inside protons and atomic nuclei to reveal secrets of the strongest force in nature

January 10, 2020

Electrons will collide with protons or larger atomic nuclei at the Electron-Ion Collider to produce dynamic 3-D snapshots of the building blocks of all visible matter.

UPTON, NY— Yesterday, the U.S. Department of Energy (DOE) named Brookhaven National Laboratory on Long Island in New York as the site for building an <u>Electron-Ion Collider</u> (EIC), a one-of-a-kind nuclear physics research facility. This announcement, following DOE's approval of "mission need" (known as Critical Decision 0) on Decembei 19, 2019, enables work to begin on R&D and the conceptual design for this next-generation collider at Brookhaven Lab.

"The EIC promises to keep America in the forefront of nuclear physics research and particle accelerator technology, critical components of overall U.S. leadership in science " said U.S. Secretary of Fneroy Dan Brouillette "This facility

Department of Energy

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

JANUARY 9, 2020

Home » U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

WASHINGTON, D.C. - Today, the U.S. Department of Energy (DOE) announced the selection of Brookhaven National Laboratory in Upton, NY, as the site for a planned major new nuclear physics research facility.

The Electron Ion Collider (EIC), to be designed and constructed over ten years at an estimated cost between \$1.6 and \$2.6 billion, will smash electrons into protons and heavier atomic nuclei in an effort to penetrate the mysteries of the "strong force" that binds the atomic nucleus together.

"The EIC promises to keep America in the forefront of nuclear physics research and particle accelerator technology, critical components of overall U.S. leadership in science," said U.S. Secretary of Energy Dan Brouillette. "This facility will deepen our understanding of nature and is expected to be the source of insights ultimately loading to new technology and insolution."

EIC - Electron Ion Collider

- Electron + proton / light-ion collision
 - Polarized beam: e, p, d/³He
 - High luminosity: $L_{ep} \sim 10^{33-34} \text{ cm}^{-2}\text{s}^{-1}$, 100-1000 times HERA
 - Collision energy: $\sqrt{s} = 20 100$ (140) GeV
- Electron + heavy-ion collision
 - Wide range in nuclei

EIC physics

- Spin and flavor structure of the nucleons and nuclei
 - How does the spin of the nucleon arise?
 - Parton distribution function (PDF) of quarks and gluons
 - Significant improvement of precision of the polarized PDF at EIC, especially gluon polarization
- 3D picture of the nucleons and nuclei
 - How does the mass of the nucleon arise?
 - Generalized parton distribution (GPD) function
 - New picture to be established at EIC

EIC physics

- Gluon saturation at extreme density
 - What are the emergent properties of dense system of gluons?
- Diffractive cross section
 - 10-15% diffractive at HERA e+p
 - 25-30% diffractive predicted by Color Glass Condensate (CGC) at EIC e+A
- Diffractive vector meson production
 - ϕ meson sensitive to the gluon saturation

15 GeV on 100 GeV

incoherent - no saturation

coherent - saturation (bSat)

incoherent - saturation (bSat)

0.12 0.14 0.16

 [Ldt = 10/A fb⁻¹
]
] coherent - no saturation

0.06

0.08

ItI (GeV²)

0.1

EIC physics at zero degree

- e+A collision geometry
 - Exclusive vector meson production in diffractive process
 - Coherence requires forward scattered nucleus to stay intact
 - Veto breakup through neutron detection
 - Event-by-event characterization of collision geometry
 - *b*: impact parameter & *d*: path length
 - "Centrality" (high d) & "Skin" (low d)
- Spectator tagging in e+d/³He
 - Neutron structure
 - Neutron spin structure, S & D waves
 - Nucleon interactions
 - Short-range correlation (SRC) and EMC effect at large x
 - Diffraction and shadowing at small x

Leading baryons and very forward asymmetries

e+D

Intra-nuclear cascading increases with d (forward particle production)

Leads to evaporation of nucleons from excited nucleus (very forward)

High-energy process

Forward spectator detected ZDC
Detector performance requirements for EIC

- Photon detection
 - To identify the nuclear excitation states in addition to the neutron detection
 - Photon energy < 300 MeV
 - Full absorption calorimeter, e.g. crystal calorimeter (LYSO, PWO, ...)
- ZDC
 - Acceptance
 - 25 mrad crossing angle for EIC at BNL (aka eRHIC)
 - Forward magnet aperture ±4 mrad opening angle for ZDC
 - Position resolution
 - 1 cm position resolution \rightarrow 300 μrad angular resolution
 - \rightarrow 30 MeV p_{τ} resolution for 100 GeV spectator neutron
 - Energy resolution
 - Minimum requirement $\Delta E/E = 50\%/\sqrt{E}$ (GeV)
 - \rightarrow 50 MeV p_{τ} resolution for 100 GeV spectator neutron
- Radiation hardness
 - 100k 1MGy or $n_{eq} = 3x10^{12} 10^{13}$ for 1-year operation
 - $n_{eq} > 10^{14}$ for lifetime

A_N of very forward π^0

- p_T dependence
 - Large asymmetry (up to 0.1) even at low $p_T (p_T < 0.6 \text{ GeV}/c)$
 - Becoming larger (more than 0.1) at high p_T (0.6 GeV/ $c < p_T$)

Data analysis has been performed by Minho Kim (Korea Univ.)

Background asymmetry (measured, zero consistent) subtracted

Bar: statistical error Box: systematic uncertainties including beam center correction, acceptance correction, polarization, and background asymmetry subtraction

A_N of very forward π^0

- *x_F* dependence
 - $A_N \sim 0$ at $p_T < 0.09$ GeV/c
 - $A_N > 0$ at 0.09 GeV/ $c < p_T$ and rising with x_F

Discussions for ALICE-FoCal

- For RHICf upgrade (2022 and/or 2024)
 - Space restriction at RHICf
 - Possible new mini-FoCal with new readout scheme for RHICf?
 - Readout electronics integration to STAR and/or sPHENIX electronics & DAQ system
 - Pad and/or pixel
 - π^0 identification
 - Schedule?
- For ZDC at EIC
 - EM + Hadron calorimeters
 - e.g. 60cm x 60cm
- For ALICE-FoCal
 - What would be contribution or deliverable from RIKEN if RIKEN participates?

Joint CFNS & RBRC workshop

- Physics and detector requirements at zero-degree of colliders
 - 24-26 September 2019
 - Stony Brook University

GEOMETRY AND PHY

Joint CFNS & RBRC Workshop on Physics and Detector Requirements at Zero-Degree of Colliders September 24-26, 2019

EIC - Electron Ion Collider

- High-energy QCD frontier to study nucleon (hadron) and nucleus (cold nuclear matter) from quarks and gluons
- World's first polarized electron + proton / light-ion / heavy-ion collider
 - Wide (Q², x) region
- Electron + proton / light-ion collision
 - Polarized beam
 - e, p, d/³He
 - High luminosity
 - $L_{ep} \sim 10^{33-34} \, \text{cm}^{-2} \text{s}^{-1}$
 - 100-1000 times HERA
 - Collision energy
 - $\sqrt{s} = 20 100 (140) \text{ GeV}$
- Electron + heavy-ion collision
 - Wide range in nuclei

JLEIC at Jefferson Lab

February 10, 2020

Quark-gluon structure

- 1-D picture
 - Parton distribution function (PDF) of quarks and gluons
 - x: momentum fraction of quarks and gluons
 - Significant improvement of precision of the polarized PDF at EIC
 - especially gluon polarization

• 3-D picture

- Generalized parton distribution (GPD) function
 - charge distribution
 - magnetic-moment distribution
 - mass distribution
- Comparison of radii (R)
- New picture to be established at EIC

b_⊤ (fm)

February 10, 2020

Tomography of the nucleon / nucleus

- EIC = color dipole microscope
 - Exclusive process and diffractive process
 - 3D distribution: transverse spatial distribution

- GPD (Generalized Parton Distribution)
 - Spatial imaging of gluons and quarks = tomography
 - HERA: 1st generation
 - EIC: 2nd generation (high luminosity, heavy ion, polarization)
 - Orbital angular momentum
 - li's sum rulo

• Ji's sum rule
• Origin of the nucleon spin
$$J_q^z = \frac{1}{2} \sum_q \Delta q + \sum_q L_q = \frac{1}{2} \left(\int_{-1}^1 x dx (H^q + E^q) \right)_{t \to 0}$$

February 10, 2020

Tomography of the nucleon / nucleus

- DVCS
 - Deeply virtual Compton scattering

Spatial distribution of sea quarks at EIC 100 fb⁻¹ and corresponding density of partons in the transverse plane

Distribution of gluons

Meson production

- Gluon tomography by measuring J/ ψ , ϕ , ρ , etc.
- Precision measurement at large radius with high luminosity

February 10, 2020

b_T (fm)

• Very forward proton acceptance for DVCS exclusive measurement

Gluon saturation in e+A collisions

000000-000000

000000

- Gluon emission
 - Divergence at small x
- Gluon recombination
 - Restriction of divergence
- Gluon saturation in balanced
 - Based on classical idea of the saturation
- First observation of a quantum collective gluonic system
 - Precision comparison of experiment and Color Glass Condensate (CGC) as a theoretical model of the gluon saturation
- Precision understanding of nucleus with the quark-gluon picture necessary as the initial state of the QGP for understanding its production mechanism

Gluon saturation in e+A collisions

Diffractive cross section

$$\sigma_{\rm diff} \propto [g(x,Q^2)]^2$$

- Most sensitive way to study the gluon saturation
- 10-15% diffractive at HERA e+p
- 25-30% diffractive predicted by CGC at EIC e+A

3D structure of the nucleus

- Diffractive vector meson production

GPD studies with exclusive processes

e+D

e+A

D pol

e pol

p, *n*

High-energy

spectator detected ZDC

particle production)

Intra-nuclear cascading

increases with d (forward

Leads to evaporation of

nucleons from excited nucleus (very forward)

Forward Roman pot

process

- Spectator tagging
 - Neutron structure
 - Neutron spin structure, S & D waves
 - Nucleon interactions
 - SRC/EMC at large x
 - Diffraction and shadowing at small x
- Geometry tagging in e+A collisions
 - b: impact parameter & d: path length
 - "Centrality" (high d) & "Skin" (low d)
 - Breakup determination & veto with ZDC
 - + forward photons requiring wide aperture
- Event generator
 - GCF: <u>https://www.mit.edu/~src_emc/fri/schmidt_20190322.pdf</u>
 - BeAGLE: https://wiki.bnl.gov/eic/index.php/BeAGLE

Nucleon Momentum Distribution

- Short range correlation (SRC)
 - ~20% of nucleons in SRC pairs
 - 18% p-n pairs
 - Large relative momentum (> 300 MeV/c)
 - Small c.m. momentum and spatially very close each other
 - EMC effect
 - Nuclear PDF significantly modified by SRC pairs
- Tagged DIS at JLab \rightarrow EIC
 - e+D at JLab: Hall B & C
 - e+D & e+A at EIC
- Tagged SRC at EIC

slides by Heuenstein

Hauenstein 1 09/24/2019

14

- Isotope tagging
 - Nuclear fragments need to be tagged to reconstruct the Fermi momentum of the struck nucleon
- Rates at the EIC?
 - Needs further studies

Nuclei from ²⁰⁸Pb and ²³⁸U (1s of simulated beam time at the EIC)

- ²⁰⁸Pb (left) produces mainly heavy isotopes from evaporation
- ²³⁸U (right) produces fewer, but heavier isotopes from evaporation. It also produces very neutron-rich fission fragments (medium-mass nuclei have fewer neutrons).

slide by Nadal-Turonski

Relation to cosmic-ray physics

- e+p, e+A at EIC
 - Limited relation to cosmic-ray physics
 - Understanding hadronization
 - Cosmic ray acceleration in blazars?
 - Source of high-energy cosmic ray & neutrino?

shown by Liodakis

- p+p, p+A, A+A (at RHIC & LHC)
 - More relevance to the cosmic-ray physics
 - Understanding air-shower evolution
 - Event generator development

IR design of EIC at BNL (aka eRHIC)

- 25 mrad crossing angle
- Forward magnet aperture
 - ±4 mrad opening angle for neutron (ZDC)

JLEIC IR design

- 50 mrad crossing angle
- Forward magnet aperture
 - ± 10 mrad opening angle for neutron

Proton spectrometer

- GPD measurement
 - Normalization (low p_T or |t| coverage)
 - Slope and shape (high p_T or |t| coverage)
- Veto of nuclear breakup events in e+A
 - for proton detection, with ZDC for neutron detection
- Isotope tagging
 - with particle ID
- B0 sensors and Roman pots at eRHIC
 - $\pm 1.3 \text{ GeV}/c p_{\tau}$ for 275 GeV proton (Roman pot)

Particle ID

- psTOF in very forward region
 - MCP-PMT shows 5 ps capability
 - Mass (M) and charge (Z)
 - 0.1 ps required for 1% mass resolution
- Mini-DIRC inside a Roman pot
 - Identify ions to $\sim 1\%$ in Z^2
- Isotope tagging
 - Mass, charge and rigidity
- Spectroscopy
 - Strangeness and heavy flavors

Cherenkov light cone $\theta_{ch} = 48^{\circ}$, 360° in Φ Direct light propagates as wavefront – isochronous Light emitted at "wrong" Φ ... longer path or exiting

shown by Chiu

shown by Nadal-Turonski

Zero Degree Calorimeter (ZDC)

- Position sensitive ZDC
 - Energy (E) resolution
 - Geometry tagging
 - Position (or θ) resolution
 - p_T (or |t|) resolution
 - Need both *E* and θ resolution
 - Intrinsic momentum spread from beam emittance
 - Spectator tagging
 - Isotope tagging
 - Uniformity (position dependence)
 - Aperture (IR & detector design)
 - ±4 mrad @ BNL (eRHIC)
 - ±10 mrad @ JLab (JLEIC)
 - Radiation dose & hardness

ZDC at EIC

- Position resolution
 - 1 cm position resolution -> 300 urad angular resolution > 30 MeV pT resolution for 100 GeV spectator neutron
- Energy resolution
 - Minimum requirement $\Delta E/E = 50\%/\sqrt{E}$ (GeV) for 50 MeV pT resolution for 100 GeV neutron

ZDC at EIC

- Detector requirements for spectator neutron tagging
 - *p*_T resolution

 $D(e,e'n_s)X \approx p_{bound}(e,e')X$ 200 GeV/c D \rightarrow 100 GeV/c spectator neutron Hadronic Calorimeter at 45 m (JLEIC) Impact point resolution 1.5 cm rms: • $\frac{\delta p_T}{n} = 0.33 \text{ mrad} \Rightarrow \delta p_T = 33 \text{ MeV}$ Equivalent to rms beam spread • If energy Resolution $\frac{\delta E}{E} = \frac{(35\%)}{\sqrt{E/GeV}}$ • $\alpha = A \frac{p_n^+}{P_A^+} \approx \left[1 + \frac{p_n}{M_N}\right]_{Deuteron Rest-Frame}$ • $\delta \alpha = \frac{\delta E}{E} = 3.5\% \Rightarrow \delta p_n^{D-rest} \approx 35 \text{ MeV/c}$ • If $\frac{(100\%)}{\sqrt{E/GeV}} \rightarrow \delta p_n^{D-rest} \approx 100 \text{ MeV/c}$ C.Hvde

9/25/19

slide by Hyde

Detector requirements

- TOPSIDE / CALICE
 - Imaging calorimeter
 - Improving e/h with software compensation
- EIC HCal R&D
 - Improving e/h with timing (dual-gate offline compensation)
 - Energy resolution better than ~40%/√E (GeV) + few% is challenging

• ALICE FoCal

Detector requirements

- Position layers (or Shower Max Detector)
 - Scintillation fiber/bar
 - Plastic fiber
 - Crystal bar (~1mm)
 - Cherenkov
 - Quartz fiber
 - Silicon sensor

	Plastic fiber	Crystal bar	Quartz fiber	Silicon
Source	Scintillation		Cherenkov	
Signal	good	good	weak	good
Rad Hardness	poor	ОК	excellent	ОК
Cost	\$	\$\$	\$\$	\$\$\$
Position Resolution	good	good	poor	best
Large acceptance	ОК	position dependent	ОК	ОК

Summary

- Physics at zero degree of EIC
 - GPD, gluon saturation in e+A, leading baryons, spectator tagging, geometry tagging, SRC/EMC, isospin tagging, spectroscopy, ...
- IR & detector requirements
 - Proton spectrometer, partic ID, ZDC, ...
- Next goals
 - Physics, detector and IR requirements at zero degree to be compiled in an EIC detector R&D letter of interest of the zero-degree apparatus (January, 2020)
 - Next meeting to be planned before making an EIC detector R&D proposal (July, 2020)
 - Please consider to join us