PHENIX Data Analysis Status and Prospect

Benard Mulilo
KU/RIKEN
RBRC Group Meeting
Feb. 12, 2019@ 9AM JST

Content

Slide 2

\& Data set and overview

H One-dimensional P_{T} unfolding analysis
\mathscr{H} Two-dimensional $\left(\mathbf{P}_{\mathbf{T}}, \Phi\right)$ unfolding analysis

If Prospect and analysis schedule

Data Set and Overview ${ }^{1}$

Slide 3

Data Set and Overview ${ }^{3}$

Slide 4

Strong (hadronic)

A

Primakoff (Electromagnetic)
A

One-dimensional P_{T} Unfolding Analysis

Slide 5

Unfolding

\square Measurements in high energy physics (HEP) are usually affected by various detector effects such as the resolution, efficiency, etc.
\square Unfolding technique removes these effects and recovers the true spectrum.
Inputs to singular value decomposition (SVD) object
\square Data
\square Covariance matrix

- True spectrum
- Reconstructed spectrum (Reco)
\square Detector response (smearing) matrix

Unfolding Input - Measured $\mathbf{P}_{\mathbf{T}}$ Spectrum

Slide 6

(1) Data to unfold: Run 15 inclusive pAu transverse momentum data at $\sqrt{s_{N N}}=200 \mathrm{GeV}$.

Unfolding Input - Reco $\mathbf{P}_{\mathbf{T}}$ Spectrum

(2) Reco spectrum: pAu reconstructed P_{T} spectrum from a combination of UPC (EM) + DPMJET (HAD) MC training samples. This is a hypothesis.

Neutron Selection Cuts

Following cuts were utilized for neutron identification and rejection of photon events. Same cuts were applied to experimental data:
© ZDC energy: $40<\mathrm{E}<120$ and $2^{\text {nd }}$ ZDC energy/ZDC total energy >0.03 (i.e. non-zero $2^{\text {nd }}$ ZDC energy)
© Acceptance cut: $0.5<\mathrm{r}<4.0 \mathrm{~cm}$
© SMD multiplicity: $\mathrm{Nx} / \mathrm{Ny} \gg=2$ fired SMD strips.
© That is Nx and $\mathrm{Ny}>1$ fired strips above SMD threshold $\mathrm{E}=0.003 \mathrm{GeV}$.

Unfolding Input - Reco $\mathbf{P}_{\mathbf{T}}$ Spectrum

ZDC Total Energy Cut Check

H ZDC total energy: $40<\mathrm{E}<120$ and $2^{\text {nd }} \mathrm{ZDC}$ energy/ZDC total energy >0.03 cuts

Unfolding Input - Reco $\mathbf{P}_{\mathbf{T}}$ Spectrum

Slide 9

UPC + DPMJET Reco Pt: $40<E<120,0.5<r<4.0, E 2 / E>0.03$ for $n x \& n y>=2$ SMD Fired

Unfolding Input - True $\mathbf{P}_{\mathbf{T}}$ Distribution

(3) True spectrum:

True P_{T} spectrum from addition of UPC (EM) + DPMJET (HAD) MC samples.

Unfolding Input - Response Matrix

Slide 11
(4) Detector response matrix: 2D plot extracted from the Reco and True P_{T} spectra of MC.

Unfolding Input - Covariance Matrix

Slide 12

(5) Covariance matrix: 2D histogram extracted from the measured P_{T} Spectrum.

Finally created a TSVDUnfold object to perform unfolding of the data distribution.

```
TSVDUnfold *tsvdunf = new TSVDUnfold( hdata, statcov, huDreco, huDTrue, UAdet )
```


Unfolding Output - Regularization Parameter

© Performed unfolding with the regularization parameter (kreg $=6$ as optimum). TSVDUnfold Id

© This distribution helps us cross-check the quality of our unfolding regularization.
© Regularization is chosen as the point where |d_i| stops being statistically significant.
© This is the point where the regularization (kreg) is considered most optimal.

Unfolding Output - Unfolded $\mathbf{P}_{\mathbf{T}}$ Distribution

Unfolded, Data, Reco and True Superposed Pt Spectra (Kreg = 6)

Unfolding Output - Unfolded $\mathbf{P}_{\mathbf{T}}$ Distribution

Comparison of unfolded spectra with $\mathrm{kreg}=4,6$ and 8

RIKEN Nishina Center Acc. Progress Report [One page only]

Unfolding the transverse momentum distribution for very forward neutron production in $p \mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$
B. Mulilo, ${ }^{* 1,+2}$ for the PHENIX collaboration

The PHENIX collaboration measured that when a ransversely polarized proton with spin up collide
with unpolarized proton at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, with unpolarized proton at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, the
generate neutrons predominantly to the right 1 . enerate neutrons predominantly to the eright
2011, theorists explained this result in terms of the terference of pion and a_{1} reggeon exchanges ${ }^{2}$). But 2015 using run 15 pAu data, we observed that when a polarized proton collides with a gold nucleus at $\sqrt{s_{N} / 2}$ contrary to theoretical predictions ${ }^{2}$. This nuclear de pendence of the asymmetry $\left(A_{N}\right)$ has, therefore, racted a massive interest in nuclear physics.
To explowe the we are now studying A_{N} as as a function of the true transverse momentum ($P t$). We begin with an undetanding that our measurements are limited by know effects such as the detector resolution and detection e
ficiency among others. Our technique is, therefore, employ a method known as unfolding to remove the known effects and recover the true distribution.

Fig. 1. Smearing response matrix mapping the binned true Pt spectrum to the measured spectrum.

We proceed by parametrizing measurement effect using the response matrix in Fig. 1 from Monte Carlo ${ }^{4}$ What this matrix does is to map the binned true spec trum in the Magenta line onto the measured spectrum in the Green line of Fig.2. For the measured and tr natrix element $S_{i j}$ gives the fraction of entries fro in T_{j} that end up being reconstructed in bin R_{i}. value decomposition method ${ }^{5}$) contained in CERN ROOT toolkit. Since our smearing matrix is not perectly diagonal, we unfolded with a parameter, alias Kreg ${ }^{55}$, which determines the regularization of the un| 71 |
| :---: |
| $t 2$ |
| RIKEN Nishina Center |
| Department of Physics, Korea University |

Fig. 2. Superposition of the experimental data, unfolded, true and measured $P t$ distributions.

Fig. 3. Unfolded spectra with various parameters.
folding. The unfolded spectrum was the distribution corresponding to an optimum Kreg $=6$ as depicted in
Fig.2. In the vicinity of optimum Kreg, we expect the unfolded distributions to behave normally, so we compared neighboring Kreg 3 and 4 to the optimum Kreg $=6$ and the result was as expected as shown in Fig.3.
We are now extending the ideas of the one dimensional unfolding to two dimensional unfolding of $P t$ in azimuth Φ. The unfolded spectrum will then be used to calculate A_{N} as a function of the unfolded $P t$ and we
will finally be able to draw further conclusions about the the nature of the proton spin.

References

1) A. Adare et al. Phys. Rev. D88 (2013) 032006. 2) B. Z. Kopeliovich et al. Phys. Rev. D84 (2011) 114012
2) A. Aidala et al. Phys. Rey. Lett. 120, 22001 (2018) 3) A. Aidala et al. Phys. Rev. Lett. 120, 022001
3) G. Mitsuka Phys. Rev. C 95 , 044908 (2017) 4) G. Mitsuka Phys. Rev. C 95,044908 (2017)
4) Nucl. Instr. Meth. A372, 469 (1996 (hep-ph/9509307]

Contribution Form >Finished

Your manuscript has been sent to the RIKEN Nishina Center Accelerator Progress Report Editorial Committee.
Once the manuscript is confirmed by the editorial committee, a confirmation mail will be sent to the contributor
In case the manuscript needs to be revised, inform the Editorial Committee after receiving the confirmation mail
Do not re-submit via web site.

RIKEN Nishina Center Accelerator Progress Report Editorial Committee
E-mall: progesse@ribf.riken.jp

Japanese

Go to APR TOP Have another manuscript to send? Go to Contribution form top.
English

Go to APR TOP Have another manuscript to send?
Go to Contribution form top.

2D ($\mathbf{P}_{\mathbf{T}}, \Phi$) Unfolding for Asymmetry Calculations

Preparation of the true and reconstructed transverse momenta distributions in azimuth, Φ.
True and reconstructed transverse momentum distributions ($\mathrm{GeV} / \mathrm{c}$):

- P_{T} bins $=4$ bins
- Minimum $P_{T}=0.0$
- Maximum $\mathrm{P}_{\mathrm{T}}=0.3$
- P_{T} bin width $=0.075$
- P_{T} slices $=0.0<\mathrm{P}_{\mathrm{T}}<0.075($ bin 1$), 0.075<\mathrm{P}_{\mathrm{T}}<0.150($ bin 2$), 0.150<\mathrm{P}_{\mathrm{T}}<0.225($ bin 3$)$, $0.225<\mathrm{P}_{\mathrm{T}}<0.300$ (bin 4)

True and reconstructed azimuth, Φ (radians):

- Φ bins $=6$ bins
- Minimum $\Phi=-3.14$ (-Pi)
- Maximum $\Phi=+3.14$ (+pi)
- Φ bin width $=1.05$
- Φ slices $=-(3.14<\Phi<2.10)(b i n 1)$, $-(2.10<\Phi<1.05)(b i n 2)$), $-(1.05<\Phi<0.0)$ (bin 3), $0.0<\Phi<1.05($ bin 4$), 1.05<\Phi<2.10($ bin 5$)$ and $2.10<\Phi<3.15($ bin 6$)$

Current Tasks

Slide 18

* Converting two-dimensional to one-dimensional P_{T} in Φ distribution and construct the smearing response matrix input to the TSVD unfolding (current priority)
* Apply the unfolding using ROOT's singular value decomposition (SVD) method incorporated in CERN's ROOT analysis toolkit.

Analysis Prospect

\square Reconstruct P_{T} - dependence of A_{N} distribution

PRD84,114012(2011)
$p^{\uparrow}+p$
Reference

Compute systematic uncertainties associated with the A_{N} vs. P_{T}

Below is the analysis schedule for tasks remaining after the 1D unfolding results shown in this presentation. The schedule is too compact to finish all remaining tasks this year, 2020.

TIMELINE	ANALYSIS TASKS	STATUS
Nov. 2019	Monte Carlo tuning to match data	Checked
Nov. 2019	Disable single SMD hit event and get rid of spikes	Checked
Nov. 2019	Azimuthal distribution health check of UPC_ $A_{N}+0.2$	Checked
Dec. 2019	Convert 2D $\left(\mathrm{P}_{\mathrm{T}}, \Phi\right)$ into 1D preparation for 1D unfolding	Here now
Dec-Jan 2020	$\mathrm{P}_{\mathrm{T}}, \Phi 1 \mathrm{D}$ unfolding	current
Jan-Feb 2020	Stability check of unfolding matrix using MC	current
Feb-Mar 2020	Unfolding experimental data	current
Mar. 2020	Calculate A_{N} as a function of P_{T}	Pending
Mar. 2020	Backgrounds and systematic uncertainty	Pending
Apr. 2020	Preliminary	Pending
May-Jul 2020	Paper draft	Pending
Aug. 2020	Paper submission	Pending
Aug-Oct 2020	Thesis writing	Pending
Dec. 2020	Defense	Pending

Analysis Schedule (Tentative)

If there will be positive feedback from the University of Zambia? Tentative but more realistic

TIMELINE	ANALYSIS TASKS	STATUS
Jan. 2020	Convert 2D $\left(\mathrm{P}_{\mathrm{T}}, \Phi\right)$ into 1D hist prepartion for unfolding	Now here
Mar. 2020	$\mathrm{P}_{\mathrm{T}-\Phi}$ 1D unfolding and stability check of unfolding matrix	Pending
Aug. 2020	Unfolding the experimental data and calculation of $\mathrm{A}_{\mathrm{N}}\left(\mathrm{P}_{\mathrm{T}}\right)$	Pending
Dec. 2020	Study the background and systematic uncertainty and get preliminary	Pending
Jun. 2021	Prepartion and submission of the paper draft	Pending
Dec. 2021	Defending thesis and completion of the Ph.D requirements.	Pending

Unfolding Output - Unfolded $\mathbf{P}_{\mathbf{T}}$ Distribution

Unfolded, Data, Reco and True Superposed Pt Spectra (Kreg = 4)

Unfolding Output - Unfolded $\mathbf{P}_{\mathbf{T}}$ Distributions

Comparison of unfolded spectra with $\mathrm{kreg}=2,4,6,8$ and 10

Unfolding Output - Unfolded $\mathbf{P}_{\mathbf{T}}$ Distribution

Unfolded, Data, Reco and True Superposed Pt Spectra (Kreg = 21)

Acceptance Cut Check

Slide 4

H Inner and outer radii $>0.5 \mathrm{~cm}$ and $<4.0 \mathrm{~cm}$ cuts, respectively are applied as shown in the bottom right side panel.

SMD Energy Check

Slide 5

Vertical (x) smd energy before threshold cut

Vertical (x) smd energy after threshold cut

Horizontal (y) smd energy before threshold cut

Horizontal (y) smd energy after threshold cut

SMD XY Position Check

Slide 6

© Top panels depict \# of fired vertical, Nx , (left) and horizontal, Ny , (right) smd before applying $\mathrm{Nx}(\mathrm{Ny})>1$ hit cut.

© Bottom panels are x (left) and y (right) particle position distributions before smd cut, $N x \& \& N y>1$ fired strips above SMD threshold, $E=0.003 \mathrm{GeV}$ is applied. The spikes $x=7$ and $y=8$ are smd strips.

SMD XY Position Check

Slide 7

© Top panels display the number of vertical, Nx , (left) and horizontal, Ny , (right) smd after applying $\mathrm{Nx}(\mathrm{Ny})>1$ hit cut.

x-shower position distribution after smd >1 cut

\# of horizontal smd after smd > 1 cut

y-shower position distribution after smd >1 cut

© Bottom panels are x (left) and y (right) particle position distributions after smd cut $\mathrm{Nx} / \mathrm{Ny}>1$ fired strips above the SMD threshold, $\mathrm{E}=0.003 \mathrm{GeV}$ is applied. The SMD spikes in the x and y distributions have now been eliminated.

