INTT Status

T. Hachiya RBRC and Nara Women's Univ.

Current status

- Aanalysis on Beam test 2019
 - MIP and efficiency
- Bus extender status
- Production status (preparation)
- Streaming readout

Beam Test at FNAL (June -)

- Ladders
 - New ladders with Si=320um
 - Liquid cooling system
- 4 ladders are installed
 - 3 ladders are successfully readout
- 40mm FPHX Silicon strip sensor INTT PREPF LADDER2 INTT sensor module 230mm

- Purposes
 - Readout multiple ladders simultaneously w/ full readout chain (GTM – FEM – DCM)
 - Measure MIP peak
 - Study the efficiency
 - Test very long cables
- Short summary
 - Beam test was successful
 - We did and found some issues

Beam Test setup

- We successfully readout 3 ladders (out of 4)
 - No data come out from that ladder
 - Problems about knowledge how the system works
 - Readout system is different with the standalone test bench at lab.

INTT workfest

- Oct. 7-11 2019 in Nara
- Dec. 9-13 2019 in NCU (Taiwan)
- Mar. 9-13 2020 in Nara
- Speed up the beam test analysis
- Setup the test bench at NCU

roup meeting

MIP measurement with FPHX chip

- FPHX has 3 bit ADC range but these threshold can be set 8 bit DAC width.
 - ADC measurement is
- DAC Scan
 - Took data with changing DAC value to cover the full MIP range

ADC (3bit)	DAC (8bit)
0	20
1	25
2	48
3	98
4	148
5	172
6	223
7	248

MIP peak Layer=0 chip=6

- MIP peak clearly seen in all plots
 - PEAK = 664@L0
 - X-axis is changed to mV (same with N electrons)
- Single strip hit is requested.
- MIP peak is confirmed by GEANT

7

Efficiency

ADC $1 \\ 0.35 \\ 0.35 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.15$

1277

4.538

1.647

- Hit in denominator : single hit + ADC>3
- Correlated hits in 3 layers
- Efficiency
 - A few % loss by the timing
 - Noise can saturate the band width

Next beam test in May 2020

- Take more data with full readout chain
 - Work with full readout chain
- Study the efficiency loss by timing

• Plan

- March 23rd April 10th Ladder assembly and test
- April 1st 14th GTM based DAQ test. (Should be prepared even earlier)
- April 15th 21st Packing and shipping equipments
- April 22nd 29th install at FTBF
- Crucial part
 - GTM based DAQ well prepared
 - We have new engineer from the BNL instrumentation division.
 - Work for the DAQ and upgrade the DAQ with the streaming readout

Very long data cable (Bus extender) R & D

- Follow the FVTX tech -- FPC
- Status
 - Design completed
 - Prototype tested at FNAL beam test
 - Performance looks OK
- Issues
 - Remain in the production

	FVTX	INTT
Length	10~30 cm	120cm
Layer	7	4
Signal	62 pairs (LVDS)	62 pairs
Power	V-a, V-d, GND	V-a, V-d, GND
Substrate	Polyimide	LCP
Impedance	50	50

Long FPC with high density is technically challenging

Current Bus Extender status

• Production issue

- Making the through hole on FPC has problem
 - Some nodules by residue of the glue
 - Changing the drill and washing the hole by chemical doesn't work very much
 - Testing new glue sheets
 - works nicely

• Pulse heights issue

- Smaller pulse from sensor
 - Eye is small
- Use larger LVDS current to get higher pulse
 - HDI modification is needed

2020/2/12

Stave design updated

- Cooling system from air to liquid (water)
- Thickness 400 \rightarrow 600 um for stiffness
 - the effect on mass resolution is under investigation

Towards Production

Component	Make	Status
Silicon Sensors	Hamamatsu Co.	Ready
FPHX Chip	FNAL	Ready
HDI	REPIC Co.	Ready
Stave	LBNL -> ASUKA Co.	Prototype-4
Bus Extender	REPIC Co.	Prototype-4

Moving to the production phase

INTT Production

- Production at BNL (2/3) and NCU (1/3)
- Test bench for pre-production check is in preparation

Streaming readout

- FELIX is used for streaming read out at sPHENIX
 - Developed for ATLAS
 - sPHENIX TPC uses FELIX
 - sPHENIX management decided to use this for INTT (All tracking detectors)
- INTT needs to update readout chain
 - FELIX replace FEM and DCM-II
 - ROC FPGA code needs to be updated for FELIX
 - New engineer take care of this

Current readout chain

Beam Signal

Beam position

• Beam width in 2019 is wider than that in last year

- Beam in 2018
 - Chip16

Analysis is in progress

LVDS Signal from FPHX w/ and w/o long cable w/o cable

- Signal height w/ the cable is 70% of that w/o the cable
 - Consistent with the expectation from EM simulation
- Eye is not enough open

2020/2/12

- It is confirmed that the bus extender itself has a good performance on signal transfer
 - Bus Ext with FPHX shows bad