

RHIC-sPHENIX実験における中間飛跡検出器 INTT用シリコンセンサーによる宇宙線測定

奈良女子大学理学部 数物科学科 物理学コース B4 柴田 実香 卒業研究発表会 2020年2月21日

- ・研究背景
- ・目的
- ・宇宙線測定のセットアップと方法
- ・宇宙線測定のクラスター解析方法
- ・シミュレーションによる宇宙線測定
- ・結果
- ・まとめ

研究背景 RHIC-sPHENIX実験

- ・アメリカブルックヘブン国立研究所 RHIC(Relativistic Heavy Ion Collider)加速器での実験
- ・稼働予定期間 2023年~

20234-

・目的

衝突で生じるJet現象やUpsilon粒子を測定し、QGPの性質を決定する

・衝突エネルギーと粒子種 200GeV, 金原子核対

QGP(Quark-Gluon Plasma)

高温、高密度でハドロンの閉じ込めからクォークとグルーオンが解放されたプラズマ相 ビックバンから約10^(-5) [s]後に実現していたとされる。

中間飛跡検出器INTT

- INTT: Intermediate Silicon Strip Track detector of the Tracking syste
- ・sPHENIX実験の3つの飛跡検出器のうちの1つ
- ・樽状の4層構造のストリップセンサー
- ・ビームパイプから6cm~12cmに位置
- ・時間分解能が高く、飛跡再構成において重要な役割を担う

下図:sPHENIX測定器

INTT用シリコンセンサ-

- ・シリコンストリップセンサー(chip)
 ・78µmピッチ、320µm厚のストリップ128個で構成(channel)
 ・78µmピッチ、320µm厚のストリップ128個で構成(channel)
 ・sPHENIX実験で使用されるINTT用シリコンセンサーは、2×13個のストリップセンサーで構成されている。
- ・2×13個の読み出しチップ(FPHX)

シリコンセンサー読み出しチップ(FPHX)

- ・1つのFPHXチップが128ch分(1chip分)の信号をになう
- ・1chあたり3bitのADCをもつ。

・µ粒子は1分毎に1個/cm地上に来る。

- ・実際のsPHENIX実験における、衝突時の重心系エネルギーと放出される崩 壊粒子が持つ運動エネルギーの条件に近づける
 - ・測定する荷電粒子は光速に近い速度をもつため、大きな運動量を持つMIP(電離損失が最小となるエネルギーを持つ粒子)である。衝突時の重心系エネルギーは200GeV以上であり、崩壊粒子の運動エネルギーも膨大。
 - ・宇宙線は、地上付近で再現できる最大のエネルギー(0.4eV)を持つ粒子(MIP)である

予想エネルギー損失とFPHXチップ増幅値

- ・320µmにおけるシリコンのエネルギー損失:約1.15 $MeV \cdot g^{-1} \cdot cm^2$
- ・シリコンの密度: 2.33g·cm⁻³
- ・シリコン内で電子-正孔対を生成するエネルギー: 3.67eV 23000electrons × 1.6 × 10⁻¹⁹ × 10¹⁵ ≈ 3.7fC
- ・FPHXチップのゲイン値:約100mV/fC

卒業研究目的

- ・INTT用シリコンセンサーを用いて宇宙線を測定する。
- ・シリコンセンターからの信号の読み出しテストによる性能評価の確認 キャリブレーションテストにより、FPHXチップからデータを読み出す回路の性能評価を行うことができるが、 シリコンセンターからの信号の読み出しを確認することはできない。
- ・宇宙線測定をした場合のINTT用シリコンセンサーのデータ出力性能を評価する。

宇宙線測定 セットアップ

・地上で観測されるµ粒子のエネルギーは十分に大きいため、荷電粒子の空気中とシンチ レーションカウンターでのエネルギー損失は考えない。

・コインシデンスに使うシンチレーションカウンター

1. 231mm×24mm×6mmのシンチレーションカウンター2つ 下:使用したシンチレーションカウンター

上:シンチレーションカウンターとシリコンセンサーの設置状況

Aluminum protective cover for INTT

宇宙線測定条件セットアップ

1000

70

宇宙線測定 外部トリガーとのコインシデンス信号の読み出し回路

・宇宙線測定のデータはシンチレーションカウンター2つからの外部トリガー信号とシ リコンセンサーからの内部トリガー信号コインシデンス信号を用いる。

> 上:シンチレーションカウンターとシリコンセンサーの設置状況 シリコンセンサー上に設置:シンチレーションカウンターA シリコンセンサー下に設置:シンチレーションカウンターB

宇宙線測定 トリガーの設定

・FEMへの入力信号TRIG__INが宇宙線トリガーとAND処理後のトリガーの波形の幅よりも大きくなるように設定する。

シンチレーションカウンタからの宇宙線 アナログ信号

② 宇宙線アナログ信号が NIM 規格を通過後TTL信号に 変換された出力(FEMへの入力信号TRIG_IN)

③ シリコンの宇宙線トリガー信号 (LVL1_ACCEPT_SELF_TRIG)

 ④ 信号②と信号③のコインシデンスをとったトリ ガー信号(FEM_TRIG)

宇宙線測定 外部トリガーとのコインシデンス信号

				scintillation counter A
and the form and the second second second second second	Alexingational Antipation and an antipation of the second state of the second state of the second state of the s Alexing and the second state of	ผู้ปรูปสินทางให้เป็นที่สามาร์เป็นผู้หมู่ได้มีการสำคัญหนึ่งสามาร์เก	an ritang di tananan	
lander and an an an and a second s	- - - - 		in the second	scintillation counter B
			In radiation in	
				from silicon sensor
anili maadh <mark>misselle di Aleman mahaan mahaadaa adaa da adaa adaa aa aa aa aa aa a</mark>	ݸݾݥݡݪݡݡݹݵݪݖݛݯݯݛݯݯݛݻݓݯݛݿݵݿݿݛݠݥݹݤݖݠݛݯݛݥ ݦ	ŴĸĸġĸĸĸĸŶĦŊĸŗĸŔĬŊĸĬĸŦĸĊĸĸĔĸĸĬĸĬĸĔ	le hadrandigation	from sincon sensor
	· · · · · · · · · · · · · · · · · · ·			
	• •••• • ••• • •••			coincidence signal
เมษาตามปัญญาได้ใญญา _ญ เมื่อปัญญาญใ _{ห้ได้ได้เรียงในได้ได้ได้ได้มีสุดๆ แต่ได้เห็นได้ได้ได้ได้ได้ได้ได้ได้ได้ได้ได้ไ}	ՠֈՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ	เหตุการใหว่าวให้ปฏิสนารณาการเร็จไปเป็นไป	a sametar	

宇宙線解析プログラムクラスター化プログラム

・クラスター化

- ・INTT用シリコンセンサーはストリップセンサー
- 多くの宇宙線はセンサーを垂直に通過するが、斜めに通過した場合、連続した複数の ストリップでエネルギーを損失する。
- ・解析前のデータでは、この1ヒットによる複数ストリップのデータが別々の複数ヒット として記録されている。
- ・センサーで宇宙線測定を確認するためには、この複数ストリップの損失エネルギーを 足し合わせて1クラスターと処理しなければならない。 DAC設定値 チップ増幅値mV

15	270
23	300
60	450
98	600
135	750
173	900
210	1050
248	1200

上:DAC閾値設定

	1hit	2hits	3hits
Sum Max	384mV	416mV	463mV
Sum min	374mV	384mV	384mV

上: 通過ストリップ数ごとの予想エネルギー損失(1イベントの1ストリップ内)

宇宙線解析プログラム 連続ヒットデータのクラスター化

クラスター化後

クラスター化前

clk	bco=51	bco_full=58163	data∶	chip_id=7	chan_id=31	abc=1
clk	bco=51	bco_full=58163	data∶	chip_id=7	chan_id=32	abc=1
clk	bco=51	bco_full=58163	data:	chip_id=7	chan_id=53	abc=2
clk	bco=51	bco_full=58163	data:	chip_id=7	chan_id=54	abc=2
clk	bco=51	bco_full=58163	data∶	chip_id=7	chan_id=55	abc=1

XBco_full≂6ms Bco≃800µs

ター数(Ncls)=2

クラスター化後のクラス

宇宙線解析プログラム DAC設定値からチップ増幅値への変換

得られるadcの値とそのDAC設定値とチップ増幅値の関係 DAC設定値*4+210=チップ増幅値[mV]

DAC設定値	チップ増幅値	adc	チップ増幅値[mV]	平均值[mV]
20	290	0	290~300	290±5
23	300	1	300~450	370±75
60	450	2	450~600	520±75
98	600	3	600~750	670±75
135	750	4	750~900	820±75
173	900	5	900~1050	970±75
210	1050	6	1050~1200	1120±75
248	1200	7	1200~1234	1212±17

- ・2つのシリコンセンサーで宇宙線のヒットを確認。
- ・セットアップの関係上ヒットチップ分布がずれている。

h chan 17

ロクラスター化前の宇宙線のエネルギー損失分布 ・270~302mV、450~602mVのエネルギーを損失しているヒットが多い。

- ・1イベントあたりに含まれるヒット数
 - ・約7割:ヒット数1
 - ・約3割:ヒット数2

□損失エネルギー

- ・通過ストリップ数=1のピーク:450~600mV
- ・通過ストリップ数=2のピーク:750~900mV

赤:	ヒット数=1
青:	ヒット数=2
緑:	ヒット数=3

→通過ストリップ数によって損失エネルギーのピークが異なる。

2ストリップでは750~900mVのエネルギー損失をする組み合わせが最も多い。

シミュレーションによる宇宙線測定

・宇宙線の入射座標(x, y, z)、角度(theta, phi)をMCで発生させる。

- ・測定時にDAC閾値設定により、小さなエネルギー損失は出力されない。
- そのため、実際に通過したストリップ数よりも少ないストリップ数でのエネルギー損失が出力されると考えられる。

THE R. LAND

THE REPORT OF MAN

卒研の進行状況

柴田 実香 2020年2月13日 INTT 日本語MT

- ・卒論の進行状況
- ・2つのシリコンセンサーを用いた測定
- ・2つのシリコンセンサーを用いた測定の解析結果

卒論の進行状況

- ・スライド作成中
- ・宇宙線を継続して測定しカウント数を増やす。

- ・シミュレーションの改善
- ・卒業論文

70

- ・1つのrootファイルに2つのシリコンセンサーのデータが含まれている。
- ・Rootファイル作成時にモジュール番号を指定するが、できるファイルは同じ。作成時 に表示されるグラフは指定したモジュールのもの。

作成したいケーブル

・隣り合うBco_fullで同じchan_id, chip_idを持つヒットを含むイベント

★ Chip_idは異なるが、chan_idは同じ。 →機械的なノイズ?解析しない

module==8	pre	:chip=25	chan=40	adc=0	bco=126	bco_full=17022
	new	:chip=25	chan=40	adc=0	bco=127	bco_full=17023
module==6	pre	:chip=3	chan=84	adc=0	bco=126	bco_full=17022
	new	:chip=3	chan=84	adc=0	bco=127	bco_full=17023
module==8	pre	:chip=26	chan=3	adc=0	bco=93	bco_full=4317
	new	:chip=26	chan=3	adc=0	bco=94	bco_full=4318
module==6	pre	:chip=17	chan=87	adc=1	bco=93	bco_full=4317
	new	:chip=17	chan=87	adc=1	bco=94	bco_full=4318
module==8	pre	:chip=25	chan=60	adc=1	bco=20	bco_full=19988
	new	:chip=25	chan=60	adc=1	bco=21	bco_full=19989
module==6	pre	:chip=17	chan=105	adc=0	bco=20	bco_full=19988
	new	:chip=17	chan=105	adc=0	bco=21	bco_full=19989
module==8	pre	:chip=24	chan=9	adc=0	bco=9	bco_full=20233
	new	chip=24 :	chan=9	adc=0	bco=10	bco_full=20234
module==6	pre	:chip=3	chan=118	adc=0	bco=9	bco_full=20233
	new	:chip=3	chan=118	adc=0	bco=10	bco_full=20234
module==8	pre	:chip=11	chan=57	adc=1	bco=120	bco_full=5752
	new	:chip=11	chan=57	adc=1	bco=121	bco_full=5753
module==6	pre	:chip=2	chan=50	adc=1	bco=120	bco_full=5752
	new	:chip=2	chan=50	adc=1	bco=121	bco_full=5753
module==8	pre	:chip=24	chan=126	adc=0	bco=94	bco_full=23134
	new	:chip=24	chan=126	adc=0	bco=95	bco_full=23135
module==6	pre	:chip=15	chan=107	adc=0	bco=94	bco_full=23134
	new	:chip=15	chan=107	'adc=0	bco=95	bco_fu≇=23135

module==8 pre :chip=25	chan=40	adc=0	bco=126	bco_full=17022
new :chip=25	chan=40	adc=0	bco=127	bco_full=17023
module==6 pre :chip=3	chan=84	adc=0	bco=126	bco_full=17022
new :chip=3	chan=84	adc=0	bco=127	bco_full=17023
module==8 pre :chip=26	chan=3	adc=0	bco=93	bco_full=4317
new :chip=26	chan=3	adc=0	bco=94	bco_full=4318
module==6 pre :chip=17	chan=87	adc=1	bco=93	bco_full=4317
new :chip=17	chan=87	adc=1	bco=94	bco_full=4318
module==8 pre :chip=25	chan=60	adc=1	bco=20	bco_full=19988
new :chip=25	chan=60	adc=1	bco=21	bco_full=19989
module==6 pre :chip=17	chan=105	adc=0	bco=20	bco_full=19988
new :chip=17	chan=105	adc=0	bco=21	bco_full=19989

□解析から除いたデータ

- ・センサーが接続されていないROCのPort番号のデータ
- ・存在しえない値を持つデータ(amplitude>0, chip1~26以外, chan0~127以外)
- ・1つのセンサーにしかヒットしなかったイベント
- ・隣り合うBco_fullで同じchan_id, chip_idを持つヒットを含むイベント

Energy distribution per passed strip number

Entries 2406

120

Entries

120

ch13channel

100

80

8

ch1 ADC

89

ch1 channel

100

large

600

500

400

300

200

100

0 L 0

2/13/2020

-1

2

3

解析結果

解

Channel vs entry per chip

Module=6(up)

結果

Module6, 8のhit chip& channel (bco,bco_fullあたり)

 Port:C-3
 Scintillation Counter

 NTT Silicon Sensor #6

 ROC
 INTT Silicon Sensor #8

 Port:C-1
 Scintillation Counter

•	Channel:	一様分布
---	----------	------

large

- ・Chip:相関がみられる。
 - ・Module=8の方がヒット多い
 - →シンチレーションカウンターに挟ま れる面積がmodule=6よりも広いため。

	Module				
	8	6			
1	Chip 0~13	Chip0~13			
2	Chip0~13	Chip14~26			
3	Chip14~26	Chip14~26			
4	Chip14~26	Chip0~13			

chip correlation of modules

channel correlation of modules

- □ 2つのモジュールに同時に入射したイベントを入射位置ごとに解析
- □ 2つのシリコンセンサーで通過ストリップ数が異なるとき、1ストリップと2ストリップが示すエネルギー損失の 違い
- ・ 1ストリップ通過のエネルギー損失が450~600mV、2ストリップ通過のエネルギー損失は750~900mVのイベントが 最も多い。→通過ストリップ数が増えるとクラスター化後のエネルギー損失が大きく計算される。
 →通過スペペッツプ数が少ないものはDAC閾値以下のエネルギー損失が出力されていないため、小さいあたいをしめす。

・同じ宇宙線が異なるストリップ数通過した場合、1ストリップでは450~600mV、 2ストリップでは750~900mVのエネルギー損失をする組み合わせが最も多い。

解析結果 通過ストリップ数によるエネルギー損失の違い

- ・宇宙線のエネルギー損失は距離に比例しているため、シリコンセンサー内の通過距離 が長くなるにつれ多くのエネルギーを損失する。
- ・測定時にDAC閾値設定により、小さなエネルギー損失は出力されない。
- ・そのため、実際に通過したストリップ数よりも少ないストリップ数でのエネルギー損失が出力されると考えられる。

- ・シミュレーション
 - ・Chip情報をいれた
 - ・宇宙線データと同じデータを作り、宇宙線解析プログラムをそのままシミュレーションに使えるようにした。
- ・シリコン内の通過距離がうまく計算できていない可能性 <u>DAC設定値</u> チップ増幅値mV →できるだけ改善を継続 15 270 23 300 ・宇宙線測定 60 450 ・ストリップ数の違いでエネルギー損失の出力ピークが異なることがわかった。 98 600 135 750 ・機械的なノイズが存在することがわかった。 173 900 ・2つのシリコンセンサーを用いて測定できた。 210 1050 1200 248
 - ・ゲイン値の計算を変えた影響で、より小さなエネルギー損失のDAC設定の範囲を詳しく調べるべきだった。→DAC閾値を変えて一度測定してみたい

	1hit	2hits	3hits
um Max	384mV	416mV	463mV
um min	374mV	384mV	384mV

<u>下:通過ストリップ数ごとの予想エネルギー損失(1イベントの1スト・リップ内)</u>

energy loss per cluster

Adc_2hit

SteDevy 1364

1.663 Assan y .

1.81

40

2t

100

inder.

loan a 146

See Devix 1,214

8

ch1 adc

6

10

THE REAL PROPERTY AND A

ADÇ

120

100

解析結果 クラスター化後のエネルギー損失の違い

Module8と6に同じイベントと考えられるヒットがあった場合、それぞれでクラスター化した時のエネルギー損失値の違い

・ほぼ同じ値を示している。

large

- ・2つのシリコンセンサーで通過ストリップ数 が異なるとき、1ストリップと2ストリップ が示すエネルギー損失の違い
- ・1ストリップ通過のエネルギー損失が450~600
 mV、2ストリップ通過のエネルギー損失は 750~900mVのイベントが最も多い。→通過ス トリップ数が増えるとクラスター化後のエネ
 2/11人ボー損失が大きく計算される。