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Abstract

We briefly review some applications of machine learning and its related techniques to
nuclear shell-model calculations. As an example, we quantified uncertainty caused by the
parameters of the shell-model Hamiltonian utilizing Bayesian statistics. It enables us to
quantify the uncertainty of the theoretical predictions and their agreement with experimental
data in a statistical manner. Moreover, we point out that a large deviation of the confidence
interval for the energy in shell-model calculations from the corresponding experimental data
can be used as an indicator of some exotic property, e.g., alpha clustering. Besides, we
briefly introduce a recent effort to use the restricted Boltzmann machine to describe nuclear
shell-model wave functions.

1 Introduction

As computational power has been increasing recently, machine learning and its peripheral tech-
niques are intensively developed in the prevalence of artificial-intelligence (AI) techniques. The
applications of these techniques are expected to accelerate the progress of natural science, includ-
ing nuclear structure physics. Among the theoretical models in nuclear structure physics, nuclear
shell model calculation is one of the most powerful tools to investigate the ground and low-lying
excited states of nuclei, since it can describe any many-body correlations inside the valence
shell on equal footing by configuration mixing. In this paper, we briefly review two applications
of these techniques to the shell-model calculations as follows. The uncertainty quantification
utilizing the Bayesian statistics in shell-model calculations [1] is discussed in Sect. 2. The in-
troduction of the restricted Boltzmann machine (RBM) to the Variational Monte Carlo (VMC)
formulation in shell-model calculations is discussed in Sect. 3. This paper is summarized and
some other applications are mentioned in Sect. 4.

2 Uncertainty quantification by Bayesian analysis

2.1 Bayesian analysis

We here show the uncertainty quantification of the shell-model study of p-shell nuclei by applying
the Bayesian analysis. In this study, we take the 0p3/2 and 0p1/2 single-particle orbits with 4He
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being an inert core. While the traditional shell-model Hamiltonian by S. Cohen and D. Kurath
[2] is well-known for this model space, we construct the ensemble of the parameters of the
Hamiltonian to estimate the uncertainty.

We consider the probability distribution of the interaction parameters which reproduce the
experimental data with reasonable uncertainty. In the Bayesian analysis, it is described by
the posterior distribution, i.e., the conditional probability under the observation of data. This
posterior probability is obtained exploiting Bayes’ theorem,

P (θ|D) =
P (D|θ)P (θ)

P (D)
∝ P (d|θ)P (θ). (1)

In this work, θ is a set of 17 parameters, which consist of the 2 single-particle energies and 15
two-body matrix elements and defines the shell-model Hamiltonian in the p-shell model space.
The D is a set of the physical observables, which are taken as 33 data of energies and excitation
energies in this work. In the present work, the likelihood function is taken as

P (D|θ) = exp[−χ2(θ)/2] (2)

with the squared errors,

χ2(θ) =
ND∑
n=1

Oexpt
n −Oth

n [θ]

∆O

2

. (3)

where the Oexpt
n and Oth

n denote the n-th experimental data and theoretical data, respectively.
The ND is the number of data and, in this case, we take ND = 33 binding and excitation
energies of the p-shell nuclei. ∆O denotes the typical error, 0.35 MeV, containing experimental
and theoretical ones although the experimental error is negligible for these energies.

For simplicity, the prior probability is taken as the uniform distribution, namely P (θ) ∝ 1.
In this case, the maximum a posteriori (MAP) estimation becomes with the minimization of the
χ2 fit. Note that the denominator in Eq.(1) is absorbed to the normalization factor and does
not need to be considered.

We generate sets of the Hamiltonian parameters θ whose frequency distribution obeys the
probability P (D|θ) to estimate the uncertainty of the theoretical results caused by the param-
eter fitting. For that purpose, we adopted the Laplace approximation [1], since we found it
numerically difficult to obtain the parameter sets using the Markov Chain Monte Carlo method
without this approximation.

2.2 Results

We prepared 50,000 samples of θ whose frequency distribution obeys the posterior probability,
Eq.(1), and performed shell-model calculations to estimate the uncertainty of the shell-model
results. Figures 1(a) and (b) show the excitation energies and energy expectation values and
their uncertainties of the low-lying states of 12C. In the figures, the violin plots with error bars
show the theoretical results and their uncertainties. The shell-model results well reproduce the
experimental values, which means that the experimental values are inside the 1σ uncertainty
ranges except for the 0+2 state.

It indicates that the 0+2 state cannot be described by p-shell shell-model calculation, which
is reasonable since this state is known as three α-cluster state, or called the Hoyle state and its
structure is considered to be far from shell-model wave functions. The result of the valence-shell
in-medium similarity renormalization group (VS-IMSRG), in which the effective interaction is
given in an ab initio way, is also shown for comparison.
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Figure 1: (a) Excitation energies and (b) energy expectation values of the ground and low-
lying states of 12C. The labels (Jπ, T,NJT ) denote the total angular-momentum and parity Jπ,
isospin T , and N -th lowest state of (Jπ, T ). The violin plots with error bars show the theoretical
values and their uncertainties. Red dotted lines, orange triangles, and blue triangles denote the
experimental values, the traditional shell-model results [2], and the VS-IMSRG results [3]. Taken
from Ref. [1].

3 Variational Monte Carlo in nuclear shell-model calculations
and the restricted Boltzmann machine

In general, the shell-model calculation is difficult to be applied to heavy-mass nuclei since the
dimension of the Hamiltonian matrix often becomes too huge to be diagonalized. As an attempt
to solve this problem, we propose to introduce the Restricted Boltzmann Machine (RBM),
one of the artificial neural networks, to the Variational Monte Carlo (VMC) framework. The
introduction of the artificial neural network to solve quantum many-body problems was firstly
succeeded in condensed matter physics [4, 5].

3.1 Formulation

We start with the framework of the VMC in shell-model calculations [6]. The VMC trial wave
function with even A particles, |φ〉, is defined as

〈m|φ〉 = N(m)〈m|
(
fijc

†
ic
†
j

)A/2
|−〉 (4)

where i and j denote single-particle states, and fij is a set of variational parameters to describe
pair correlation. |m〉 = c†m1

c†m2
· · · c†mA

|−〉 is the M -scheme configuration [6, 7] specified by the
A-particle occupation of the single-particle states m = (m1,m2, · · ·mA).

n1 n2 n3 nNsps

h1 h2 hNh

bias ai

bias bk

.....

.....

weight wik

w11

w12

w21

Figure 2: Schematic view of the restricted Boltzmann machine.



The N(m) is given by the RBM and defined as [5]

N(m) =
∑

{hk=±1}
exp

∑
i

aini +
∑
i,k

wiknihk +
∑
k

bkhk


=

∏
k

2 cosh(bk +
∑
i

wikni) exp(
∑
i

aini) (5)

where ai, bk, and wik denote the bias of visible nodes, the bias of hidden nodes, and weights
between the visible node i and the hidden node k, respectively. ni = 1 for the occupied states
(nma = 1 for a = 1, 2, ..., A) and ni = 0 for the unoccupied states. The schematic view of the
RBM is shown in Fig. 2. Note that the weights of the RBM are restricted only between the
visible and hidden nodes, from which the second line of Eq.(5) is deduced.

The energy expectation values of this trial wave function is evaluated statistically by

〈ψ|H|ψ〉
〈ψ|ψ〉 =

1∑
m |〈m|ψ〉|2

∑
m

|〈m|ψ〉|2 〈m|H|ψ〉〈m|ψ〉 =
∑
m

p(m)El(m), (6)

where the local energy is defined as El(m) = 〈m|H|ψ〉/〈m|ψ〉. The summation
∑
m p(m) in

Eq. (6) is computed statistically by preparing a set of the M -scheme configurations |m〉 whose
frequency distribution obeys the probability p(m) ∝ |〈m|ψ〉|2 exploiting the Markov Chain
Monte Carlo method [6]. Thus, we avoid to store the whole possible |m〉, the number of which
may be too huge. The variational parameters, fij , ai, bk and wik are determined to minimize the
energy expectation value by the stochastic reconfiguration method [8], which can be considered
as one of the machine-learning techniques.

3.2 Benchmark test

As a benchmark test, we performed the VMC calculation to evaluate the ground-state energy
of 28Si with the sd-shell model space and the USD interaction [9]. In this case, 24 visible nodes
are used to describe each occupation of the single-particle states in sd shell for the RBM.
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Figure 3: Shell-model energies of the ground state of 28Si obtained by the exact diagonalization,
the VMC results with the 80 RBM hidden nodes, 24 RBM hidden nodes, 12 RBM hidden nodes,
and the VMC result without the RBM.



Figure 3 shows the shell-model energies obtained by the VMC without the RBM, with the
RBM 12 hidden nodes, the 24 hidden nodes, the 80 hidden nodes. The exact energy is also
shown in the left-hand side of Fig. 3. The statistical errors of the VMC are small enough and
not shown in the figure. While the VMC without the RBM shows 2.2-MeV deviation from the
exact one, the introduction of the RBM factor fills this gap to some extent. As increasing the
number of the RBM hidden nodes, the description power of the RBM is enhanced and the energy
approaches the exact value, although the 1-MeV gap remains even with the 80 hidden nodes.
Further study is expected to fill this gap by applying the angular-momentum projection [6].

4 Summary and perspectives

We briefly reviewed some applications of the machine-learning techniques to nuclear shell-model
calculations. Bayesian analysis was applied to the shell-model calculations and we demonstrated
that uncertainty quantification is feasible with p-shell nuclei as an example. The statistical
analysis of the sd-shell nuclei is found in Ref. [10]. As another application, we introduced the
RBM to the VMC approach in the framework of the shell-model calculations and performed
the benchmark test, which shows promising features to overcome the numerical difficulty in
shell-model calculations.

Many more promising attempts have been done to apply the AI-related methods to shell-
model calculations, which cannot be described in this paper. For example, we exploit a clustering
algorithm to divide the basis states of the no-core Monte Carlo shell model [11] into a small
number of groups in order to discuss the α-clustering structure of 12C. Besides, Gaussian Process
and artificial neural network are exploited to the extrapolation of the energy eigenvalue to infinite
model space in the no-core shell model approach [12, 13]. We expect that such AI-related
approaches will drastically open the frontiers of nuclear structure physics.
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