

SCALE6.2 ORIGEN library produced from JENDL/AD-2017

Japan Atomic Energy Agency Chikara Konno Mami Kochiyama Hirokazu Hayashi

Symposium on Nuclear Data 2020, 26-27 November 2020, RIKEN Wako Campus

Introduction and objective

JAEA

#2

□ ORNL released the SCALE6.2 code in 2016.

- □ The ORIGEN code in SCALE6.2 is easier to use and more precise than the ORIGEN-S code.
 - ORIGEN uses one group cross section data generated from a specified neutron spectrum and a multigroup activation library with the COUPLE code, not three group cross section data for ORIGEN-S.
- □ We expect that ORIGEN in SCALE6.2 will be mainly used for activation calculations in nuclear facility decommissioning.
- Thus we produced a SCALE6.2 ORIGEN library from JENDL Activation Cross Section File for Nuclear Decommissioning 2017 (JENDL/AD-2017) in order to popularize JENDL/AD-2017.

Processing Method -(1)

JAEA

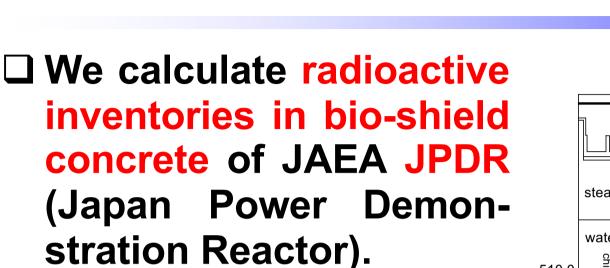
) #3

Code : AMPX-6 in SCALE6.2.2

Condition :

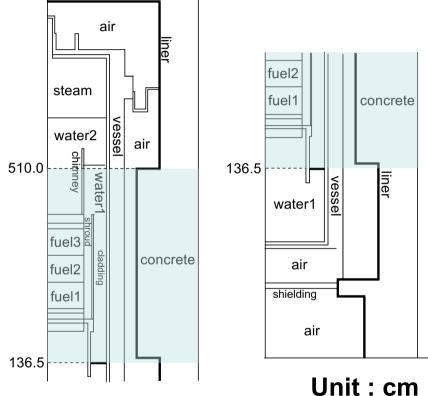
- Group structure : 200 groups (the same as one of libraries attached in SCALE6.2)
 - Assume transport calculations with MATXSLIB-J40 (199 groups)
 - ✓ The 200 group structure is the same as the 199 group structure except for its first group.
- Temperature : 300 K
 - Assume activation calculations for bio-shield concrete
- Weighting function : Maxwellian 1/E fission spectrum - 1/E (above 10 MeV)
- Infinite dilution

Processing Method -(2)


AMPX-6 processing :

• ExSite code in AMPX-6 package produces a template input file for AMPX-6.

JAEA


#4

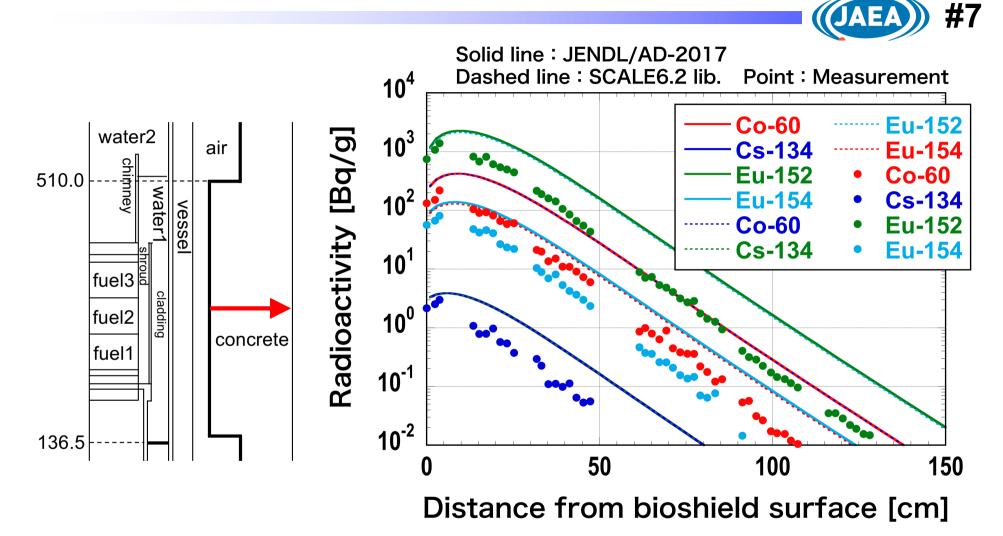
- We produce an ORIGEN library from each file of JENDL/AD-2017 with AMPX-6 and a modified template input and combine all the ORIGEN libraries to one ORIGEN library with AMPX-6.
- **Remarks on JENDL/AD-2017 :**
 - Use 0K MF10 version because 0K MF9 version is not processed.
 - Modify a metastable state level based on the decay data of SCALE6.2 (Ex. ^{134m}Cs level : 3 in JENDL/AD-2017, 1 in decay data of SCALE6.2)
 - Remove unnecessary resonance data because AMPX-6 considers them

Test with JPDR activation calculation -(1)

Neutron spectra inside the concrete are calculated with the Sn DORT code, a 199 group library including upscattering data from MATXSLIB-J40 and a simplified JPDR model.

JAEA

#5


Region of from 136.5 cm to 510 cm (vertical) is modeled in DORT.

Test with JPDR activation calculation -(2)

#6

- □ We calculate radioactive inventories in the concrete with COUPLE and ORIGEN in SCALE6.2.2 and calculated neutron spectra.
- □ Activation libraries :
 - the 200 group library produced from JENDL/AD-2017
 - the 200 group library attached in SCALE6.2 (produced from JEFF-3.1/A by ORNL)
- 0.0 is added before 199 group neutron spectra because 200 group structure is the same as 199 group structure except for its first group.
- □ Time of 161 ORIGEN and COUPLE calculations is 4 minutes (cf. 2.5 minutes for ORIGEN-S).

Test with JPDR activation calculation -(3)

Radioactivity distribution at Z=340cm (cooling : 15 years) Calculation results with two libraries are almost the same. → The library from JENDL/AD-2017 has no problem!

Summary

- □ We produced a 200 group SCALE6.2 ORIGEN library from JENDL/AD-2017 with AMPX-6.
- Radioactive inventories in bio-shield concrete of JAEA JPDR were calculated with ORIGEN in SCALE6.2.2 for testing the library.
 - the 200 group library produced from JENDL/AD-2017
 - the 200 group library attached in SCALE6.2 (produced from JEFF-3.1/A by ORNL)

→ Almost the same results

→ The produced library has no problem.

We will release the produced library.