Symposium on Nuclear Data 2020

Ag102 12.9 m	Ag103 65.7 m	Ag104 69.2m	Ag105 41.29 d	S ymposium on	Ag107 51.839 %	Ag108 2.37 m	Ag109 48.161 %	Ag110 24.6 s	Ag111 7.45 d	Ag112 3.130 h
Pd101 8.47 h	Pd102 1.02 %		Pd104 11.14 %	Pd105 22.33 %	N uclear	Pd107 6.5e+6 y	Pd108 26.46 %		Pd110 11.72 %	
Rh100 20.8 h	Rh101 3.3 y		Rh103	Rh104 42.3 s	Rh105 35,36 h	D _{ata}	2020 Nov.		Rh109 80 s	

Contribution ID: 24

Type: Poster Presentation

Evaluation of Neutron Nuclear Data on Cobalt-59 for JENDL-5/JENDL-5 のためのコバルト 59 に対する中性 子核データの評価

Thursday, 26 November 2020 16:56 (1h 54m)

Cobalt (Co) is one of the structural materials in nuclear and accelerator facilities. It is contained in carbon steel and concrete as well as SUS304. 59 Co is only stable isotope of Cobalt. The nuclear data of 59 Co are considered to be important specifically for radioactivity estimation of 58,60 Co related to decommissioning of the facilities. JENDL-4.0 includes the nuclear data of 59 Co, which based the evaluation in 1988. Major revision was carried out at the JENDL-3.3 evaluation in 2001, followed by the covariance estimation in 2002. After the release of JENDL-3.3, many measured data for capture, (n,2n), (n,p), and (n, α) reactions have been published. Therefore, the reconsideration of nuclear data is required for JENDL-5.

The evaluation of ⁵⁹Co was divided into three energy regions: resolved resonance region, unresolved resonance region, and fast neutron energy region. In the resolved resonance region, the resonance parameters and scattering radius were taken from de Saussure et al. (1992). In the unresolved resonance region, the data of thick sample of de Saussure et al. were adopted, supplemented with the data of thin sample for large resonances. In the fast neutron energy region, the nuclear reaction model code CCONE was used to calculate cross sections, angular distributions and double differential cross sections. The evaluation was performed based on many types of measured data. The obtained results are in good agreement with the measured data and will be shown in the poster presentation.

Primary author: Dr NOBUYUKI/信之, Iwamoto/岩本 (JAEA/原子力機構)

Presenter: Dr NOBUYUKI/信之, Iwamoto/岩本 (JAEA/原子力機構)

Session Classification: Poster