Estimation of Flux and Residual Radioactivity for the COMET Phase-I Experiment

N. TOKUNAGA¹, N. SHIGYO¹, S. MAKIMURA², Y. FUKAO², N. KAMEI², M. YOSHIDA²

1. Kyushu University, 2. KEK

Introduction

COMET is an experiment at J-PARC, which will search for coherent neutrino-less conversion of a muon to an electron in muonic atom^[1].

Experiment	Phase-I	Phase-II
Proton energy	8 GeV	8 GeV
Proton beam power	3.2 kW	56 kW
Total DAQ time	150 days	180 days
Production target	Graphite	Tungsten
	2024?	TBD

The maintenance is planned after the 150-day operation and the following 180-day cooling.

Purpose

Estimation of Residual Radioactivity for Phase-I experiment

- Flux during the operation
- Residual radioactivity
- Effective dose rate distribution

Simulation

- PHITS version 3.22^[2]
 JENDL-4.0 (En < 20 MeV)
 INCL4.6 + GEM (E < 3 GeV)
 JAM (E > 3 Gev)
 fixed the bug concerning
 the behavior of charged particles
 in magnetic field
- DCHAIN-PHITS version 3.21^[3] JENDL / AD-2017, JENDL-4.0, ENDF / B-VIII.0, JEFF-3.3, FENDL / A-3.0

DCHAIN-PHITS

radioactivity, gamma-ray spectrum

PHITS

effective dose rate distribution

[2] T. Sato *et al.*, Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J.[3] Hunter N. Ratliff *et al.*, Modernization of the DCHAIN-PHITS activation code Nucl. Sci. Technol. 55, 684-690 (2018) with new features and updated data libraries, Nucl. Instrum. Meth. B, 484, 29-41 (2020)

Result (Particle Flux During Operation)

Energy Spectrum at Production Target

Result (Residual Radioactivity)

Nuclide

Half Life

Result (Effective Dose Rate Distribution)

Effective dose rate is too high for maintenance

Discussion

How to reduce the effective dose rate

- Longer cooling time Effective dose rate decreses by half in about a year
- 2. Larger beam window

High proton flux around the beam window

3. Shorter production target

Secondary particles produced in the target are proportional to its length

Summery and Future Works

- Calculated fluxes and residual radioactivities by PHITS and DCHAIN-PHITS
 - The result shows that effective dose rate is too high.
- Possible ways to reduce the effective dose rate
 - Longer cooling time
 - Larger beam window
 - Shorter production target
- Other option
 - Working remotely
- Trade-offs exist in each options

Optimization is necessary with all possible means.

PHITS BUG FIX

Material

\$\$ stainless steel: D=-7.93	\$ Concrete D=-2.2	
MAT[8]	MAT[40]	
58Ni.50c -0.068077	1H.50c -0.0056	
60Ni.50c -0.026223	160.50c -0.4983	
61Ni.50c -0.00114	27Al.50c -0.0456	
62Ni.50c -0.003634	28Si.50c -0.3158	
64Ni.50c -0.000926	40Ca.50c -0.0826	
54Fe.50c -0.0406	32S.50c -0.0012	
56Fe.50c -0.64204	56Fe.50c -0.0122	
57Fe.50c -0.0154	24Mg.50c -0.0024	
58Fe.50c -0.00196	23Na.50c -0.0171	
50Cr.50c -0.0869	39K.50c -0.0192	
52Cr.50c -0.167578		
53Cr.50c -0.019002		
54Cr.50c -0.00473		

Nuclear Data Library

- JENDL/AD-2017
 - activation and decay
- JENDL (Japanese Evaluated Nuclear Library)
- JEFF (Joint Evaluated Fission and Fusion)
- FENDL (Fusion Evaluated Nuclear Library)