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Issue of High-Level Radioactive Waste (HLW)

HLW will be disposed of more than 300 meters underground. 

However, it is stagnated due to long-term radiotoxicity of long-lived nuclides.

→ Nuclear Transmutation is proposed to be one of the technical options.

But, still no effective method was found for LLFPs.

Introduction | High-Level Radioactive Waste

Nuclear Power Plant HLW
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Minor Actinoids (MAs):
237Np (𝑇1/2 = 2.41 My)
243Am (𝑇1/2 = 7.37 ky)

Long-Lived 

Fission Products (LLFPs):
93Zr (𝑇1/2 = 1.5 My)
107Pd (𝑇1/2 = 6.5 My)
129I (𝑇1/2 = 15.7 My)

93Zr (𝑇1/2 = 1.5 My)

𝑛

92Y (𝑇1/2 = 3.5 h)𝑛, 𝑝𝑛 𝛽− decay 92Zr (stable)



Introduction | Transmutation of 93Zr by spallation reaction

Among the LLFPs, 93Zr…

- has large fission yield

- has relatively small neutron capture cross section

- can change into minor metals (90,91,92Zr, etc…) through transmutation

→ We focus on the transmutation of 93Zr using spallation reaction 

by high-energy charged particles using an accelerator.

LLFP Half-Life
Cumulative 

Fission Yield from 235U
𝜎𝑛−cap [b]

79Se 300 ky 0.044% 50.04

93Zr 1500 ky 6.35% 2.24

107Pd 6500 ky 0.146% 9.19

126Sn 230 ky 0.056% 0.09

135Cs 1300 ky 6.52% 8.30

99Tc 210 ky 6.13% 23.68

129I 15700 ky 0.543% 30.33

Typical LLFPs[2]

[2] K. Shibata et al., J. Nucl. Sci. Technol. 48(1), 1-30 (2011).
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Introduction | Inverse Kinematics Method

Activation method was conventionally used 

to measure the isotope-production cross sections.

However, activation method is NOT suitable for measurement of LLFP data.
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Activation method Inverse kinematics method

In the case of LLFPs,

× Radioactive target

× Very difficult to measure yields of 

stable and short-lived nuclides 

✓ Simple setup

In the case of LLFPs,

✓ Stable target

✓ Stable and short-lived nuclides 

are also measurable

× Complicated setup

LLFP LLFP
particleparticle product product

𝛾-ray

measurable
measurable



Introduction | Previous Works

So far, isotope-production cross sections 

for some FPs and LLFPs were measured 

using inverse kinematics method at RIKEN RI Beam Factory (RIBF).

Target Beam (half-life 𝑇1/2) Energy

𝑝, 𝑑 90Sr (28 y) 185 MeV/u[3]

𝑝, 𝑑 137Cs (30 y) 185 MeV/u[3]

𝑝, 𝑑 93Zr (1.5 My) 105[4], 209[5] MeV/u

𝑝, 𝑑 107Pd (6.5 My) 50[6], 118, 196 MeV/u[7]

Overview of RIBF

[3] H. Wang et al., Phys. Lett. B 754, 104 (2016).

[4] S. Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017).

[5] S. Kawase et al., JAEA-Conf2018-001 2018, 111 (2018).

[6] H. Wang et al., Comm. Phys. 2, 2399 (2019).

[7] H. Wang et al., Prog. Theor. Exp. Phys. 2017, 021D01 (2017).
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Introduction | Objective

Purpose:
- To investigate the energy dependence of isotope-production cross section,

and to accumulate fundamental knowledge for nuclear transmutation.

→ 93Zr + 𝑝, 𝑑 @ 50 MeV/u measurement

- To investigate the target dependence of isotope-production cross section.

→ 93Nb + 𝑝, 𝑑,C @ 113 MeV/u measurement
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Target Beam (half-life 𝑇1/2) Energy

𝑝, 𝑑 90Sr (28 y) 185 MeV/u[3]

𝑝, 𝑑 137Cs (30 y) 185 MeV/u[3]

𝑝, 𝑑 93Zr (1.5 My) 105[4], 209[5] MeV/u

𝑝, 𝑑 107Pd (6.5 My) 50[6], 118, 196 MeV/u[7]

Data measured so far
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238U primary beam @ 345 MeV/u (~4 𝑒nA) from SRC

ExperimentⅠ (93Zr + 𝑝, 𝑑 @ 50 MeV/u)



Identification of reaction products

by TOF−𝐵𝜌 − Δ𝐸 method

Plastic scintillator (pla) → 𝛽, 𝛾
PPAC → 𝐵𝜌 (magnetic rigidity)

Ionization chamber (MUSIC) → Δ𝐸

Proton number: 𝑍 ∝ 𝛽 Δ𝐸
Mass-to-charge ratio: 𝐴/𝑄 ∝ 𝐵𝜌/𝛽𝛾

ZeroDegree Spectrometer
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Secondary target
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BigRIPS238U primary beam @ 345 MeV/u (~4 𝑒nA) from SRC

ExperimentⅠ (93Zr + 𝑝, 𝑑 @ 50 MeV/u)



Results | Isotope-production cross sections (93Zr + 𝑝, 𝑑 @ 50 MeV/u)

- We obtained 𝜎𝑝 and 𝜎𝑑 for 18 and 20 isotopes, respectively.

→ Advantage of the inverse kinematics method.
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Results | Isotope-production cross sections (93Zr + 𝑝, 𝑑 @ 50 MeV/u)

- 87Y has noticeable large production cross section.

→ Incident energy of 50 MeV corresponds to the first peak.
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Results | Comparison with model calculations (93Zr + 𝑝)

- Shapes and quantities are well reproduced by PHITS and INCL++/ABLA07

- Peak at 87Y in 𝜎𝑝51
- Jumps at 𝑁 = 50 originated from neutron magic number
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Results | Comparison with model calculations (93Zr + 𝑝)
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- Jumps at 𝑁 = 50 originated from neutron magic number

𝑁 = 50

𝑁 = 50

9/19



In PHITS calculation,

- underestimation in 𝑛-deficient region in odd-𝑍.

- overestimation in isotope near the target nucleus 93Zr.

- exaggerated even-odd staggering.

Results | Comparison with model calculations (93Zr + 𝑝) 9/19



INCL++/ABLA07 calculation

- well reproduces 𝜎𝑝 in 𝑛-deficient region in odd-𝑍 and 𝑝, 2𝑝 reactions

- overestimate even-odd staggering and 𝜎𝑝 in 𝑝, 𝑝𝑛 and 𝑝, 𝑛 reactions

Results | Comparison with model calculations (93Zr + 𝑝) 9/19



Results | Comparison with model calculations (93Zr + 𝑝, 𝑑)

C/E plot of PHITS calculation on nuclear chart

- underestimation in 𝑛-deficient region in odd-𝑍.

- overestimation in isotope near the target nucleus 93Zr.

- exaggerated even-odd staggering.
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Identification of reaction products
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Results | Isotope-production XS (93Nb + 𝑝, 𝑑, C @ 113 MeV/u)

- We obtained 𝜎𝑝, 𝜎𝑑 , and 𝜎C for 33, 36, and 36 isotopes, respectively.

→ Advantage of the inverse kinematics method.
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Results | Comparison with PHITS calc. (93Nb + 𝑝, 𝑑 @ 113 MeV/u)

- PHITS calculations show generally good agreement.

- Jump at 𝑁 = 50 is reproduced reasonably well.
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- Overestimation in isotopes near the target nucleus

- Exaggerated even-odd staggering

- Underestimation in neutron-deficient region in odd-𝑍 isotopes

Results | Comparison with PHITS calc. (93Nb + 𝑝, 𝑑 @ 113 MeV/u) 14/19



- Exaggerated even-odd staggering both along 𝑍 and 𝑁 are clearly seen 

in C/E plot in chart of the nuclides

Results | Comparison with PHITS calc. (93Nb + 𝑝, 𝑑 @ 113 MeV/u)

93Nb + 𝑝 @ 113 MeV 93Nb + 𝑑 @ 113 MeV/u

C
/E

C
/E
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- Jumps are seen at 𝑁 = 50 except for 93Nb 𝑝, 𝑝𝑥𝑛 ANb reactions.

- PHITS calculations show generally good agreement with experimental data

→ discuss the reason why the jump disappears on the basis of calculation

Results | Comparison with 93Zr data (𝑝-induced reactions)
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93Nb data

Results | Comparison with 93Zr data (𝑝-induced reactions)

- Cross sections by PHITS are decomposed into two components:

INCL: direct production yield via INC process

GEM: production by particle evaporation from highly excited pre-fragments
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Results | Comparison with 93Zr data (𝑝-induced reactions)
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- INCL: maximum values at 𝐴 = 92
- GEM: maximum values at 𝑁 = 50 and jumps appears in all the panels

→ 93Nb 𝑝, 𝑝𝑥𝑛 ANb: jump by GEM is smeared out by INCL

others: INCL DO NOT disturb the jumps seen in GEM components

Results | Comparison with 93Zr data (𝑝-induced reactions)
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Summary

- Isotope-production cross sections for proton- and deuteron-induced 

reactions on 93Zr and 93Nb were obtained at RIKEN RIBF

using inverse kinematics method.

- The calculations by PHITS reproduce the measured data generally well.

- But, further improvement of theoretical models is needed:

- underestimation in 𝑛-deficient region in odd-𝑍
- overestimation in isotope near the target nucleus

- Exaggerated even-odd staggering

- The magic number is reflected in the isotope-production cross sections.

- The appearance of the jump at 𝑁 = 50 depends on the relative fractions

of the INC and evaporation components.
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