2020.11.27 Symposium on Nuclear Data 2020 @ RIKEN Wako campus

Isotope production in spallation reaction of ⁹³Nb and ⁹³Zr induced by proton and deuteron

Japan Atomic Energy Agency Keita Nakano

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

- 1. Introduction
- 2. Isotope Production in Proton- and Deuteron-Induced Reactions on ⁹³Zr at 50 MeV/u
- 3. Isotope Production in Proton-, Deuteron-, and Carbon-Induced Reactions on ⁹³Nb at 113 MeV/u
- 4. Summary

1. Introduction

- 2. Isotope Production in Proton- and Deuteron-Induced Reactions on ⁹³Zr at 50 MeV/u
- 3. Isotope Production in Proton-, Deuteron-, and Carbon-Induced Reactions on ⁹³Nb at 113 MeV/u
- 4. Summary

Issue of High-Level Radioactive Waste (HLW)

HLW will be disposed of more than 300 meters underground.

However, it is stagnated due to long-term radiotoxicity of long-lived nuclides.

→ Nuclear Transmutation is proposed to be one of the technical options. But, still no effective method was found for LLFPs.

Introduction | Transmutation of ⁹³Zr by spallation reaction

Typical LLFPs^[2]

LLFP	Half-Life	Cumulative Fission Yield from ²³⁵ U	$\sigma_{n-\mathrm{cap}}$ [b]
⁷⁹ Se	300 ky	0.044%	50.04
⁹³ Zr	1500 ky	6.35%	2.24
¹⁰⁷ Pd	6500 ky	0.146%	9.19
¹²⁶ Sn	230 ky	0.056%	0.09
¹³⁵ Cs	1300 ky	6.52%	8.30
⁹⁹ Tc	210 ky	6.13%	23.68
129	15700 ky	0.543%	30.33

Among the LLFPs, ⁹³Zr...

- has large fission yield
- has relatively small neutron capture cross section
- can change into minor metals (^{90,91,92}Zr, etc...) through transmutation
- → We focus on the transmutation of 93 Zr using spallation reaction by high-energy charged particles using an accelerator.

[2] K. Shibata et al., J. Nucl. Sci. Technol. 48(1), 1-30 (2011).

Activation method was conventionally used

to measure the isotope-production cross sections.

However, activation method is NOT suitable for measurement of LLFP data.

So far, isotope-production cross sections for some FPs and LLFPs were measured using inverse kinematics method at RIKEN RI Beam Factory (RIBF).

Target	Beam (half-life $T_{1/2}$)	Energy
p,d	⁹⁰ Sr (28 y)	185 MeV/u ^[3]
p,d	¹³⁷ Cs (30 y)	185 MeV/u ^[3]
p, d	⁹³ Zr (1.5 My)	105 ^[4] , 209 ^[5] MeV/u
p,d	¹⁰⁷ Pd (6.5 My)	50 ^[6] , 118, 196 MeV/u ^[7]

- [3] H. Wang et al., Phys. Lett. B 754, 104 (2016).
- [4] S. Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017).
- [5] S. Kawase et al., JAEA-Conf2018-001 2018, 111 (2018).
- [6] H. Wang et al., Comm. Phys. 2, 2399 (2019).
- [7] H. Wang et al., Prog. Theor. Exp. Phys. 2017, 021D01 (2017).

Overview of RIBF

他下2階

Data measured so far				
Target	Beam (half-life $T_{1/2}$)	Energy		
p,d	⁹⁰ Sr (28 y)	185 MeV/u ^[3]		
p,d	¹³⁷ Cs (30 y)	185 MeV/u ^[3]		
p, d	⁹³ Zr (1.5 My)	105 ^[4] , 209 ^[5] MeV/u		
p,d	¹⁰⁷ Pd (6.5 My)	50 ^[6] , 118, 196 MeV/u ^[7]		

Purpose:

- To investigate the energy dependence of isotope-production cross section, and to accumulate fundamental knowledge for nuclear transmutation. $\rightarrow {}^{93}Zr + p, d @ 50 MeV/u$ measurement
- To investigate the target dependence of isotope-production cross section. $\rightarrow {}^{93}Nb + p, d, C @ 113 MeV/u$ measurement

1. Introduction

- 2. Isotope Production in Proton- and Deuteron-Induced Reactions on ⁹³Zr at 50 MeV/u
- 3. Isotope Production in Proton-, Deuteron-, and Carbon-Induced Reactions on ⁹³Nb at 113 MeV/u
- 4. Summary

Experiment I (93 Zr + p, d @ 50 MeV/u)

Experiment I (93 Zr + p, d @ 50 MeV/u)

Results | Isotope-production cross sections (93 Zr + p, d @ 50 MeV/u)

- We obtained σ_p and σ_d for 18 and 20 isotopes, respectively. \rightarrow Advantage of the inverse kinematics method.

Results | Isotope-production cross sections (93 Zr + p, d @ 50 MeV/u) 8/19

- ⁸⁷Y has noticeable large production cross section. \rightarrow Incident energy of 50 MeV corresponds to the first peak.

Results | Comparison with model calculations $(^{93}Zr + p)$

- Shapes and quantities are well reproduced by PHITS and INCL++/ABLA07
 - Peak at ⁸⁷Y in σ_{p51}
 - Jumps at N = 50 originated from neutron magic number

Results | Comparison with model calculations $(^{93}Zr + p)$

- Shapes and quantities are well reproduced by PHITS and INCL++/ABLA07
 - Peak at ⁸⁷Y in σ_{p51}
 - Jumps at N = 50 originated from neutron magic number

Results | Comparison with model calculations $(^{93}Zr + p)$

- Shapes and quantities are well reproduced by PHITS and INCL++/ABLA07
 - Peak at ⁸⁷Y in σ_{p51}
 - Jumps at N = 50 originated from neutron magic number

Results | Comparison with model calculations $(^{93}Zr + p)$

In PHITS calculation,

- underestimation in *n*-deficient region in odd-*Z*.
- overestimation in isotope near the target nucleus ⁹³Zr.
- exaggerated even-odd staggering.

Results | Comparison with model calculations $(^{93}Zr + p)$

- well reproduces σ_p in *n*-deficient region in odd-*Z* and (p, 2p) reactions
- overestimate even-odd staggering and σ_p in (p, pn) and (p, n) reactions

Results | Comparison with model calculations $({}^{93}Zr + p, d)$

C/E plot of PHITS calculation on nuclear chart

- underestimation in *n*-deficient region in odd-*Z*.
- overestimation in isotope near the target nucleus ⁹³Zr.
- exaggerated even-odd staggering.

- 1. Introduction
- 2. Isotope Production in Proton- and Deuteron-Induced Reactions on ⁹³Zr at 50 MeV/u
- 3. Isotope Production in Proton-, Deuteron-, and Carbon-Induced Reactions on ⁹³Nb at 113 MeV/u
- 4. Summary

Experiment II ($^{93}Nb + p, d @ 113 MeV/u$)

Experiment II ($^{93}Nb + p, d @ 113 MeV/u$)

Results | Isotope-production XS ($^{93}Nb + p, d, C @ 113 MeV/u$)

exp p

exp d

Δ

We obtained σ_p , σ_d , and σ_c for 33, 36, and 36 isotopes, respectively. \rightarrow Advantage of the inverse kinematics method.

Results | Comparison with PHITS calc. ($^{93}Nb + p, d @ 113 MeV/u$)

- PHITS calculations show generally good agreement.
- Jump at N = 50 is reproduced reasonably well.

Results | Comparison with PHITS calc. (93 Nb + p, d @ 113 MeV/u)

- Overestimation in isotopes near the target nucleus
- Exaggerated even-odd staggering
- Underestimation in neutron-deficient region in odd-*Z* isotopes

- Exaggerated even-odd staggering both along Z and N are clearly seen in C/E plot in chart of the nuclides

Results | Comparison with ⁹³Zr data (*p*-induced reactions)

- Jumps are seen at N = 50 except for ⁹³Nb(p, pxn)^ANb reactions.
- PHITS calculations show generally good agreement with experimental data \rightarrow discuss the reason why the jump disappears on the basis of calculation

Results | Comparison with ⁹³Zr data (*p*-induced reactions)

 Cross sections by PHITS are decomposed into two components: INCL: direct production yield via INC process
GEM: production by particle evaporation from highly excited pre-fragments

Results | Comparison with ⁹³Zr data (*p*-induced reactions)

Cross sections by PHITS are decomposed into two components:
INCL: direct production yield via INC process
GEM: production by particle evaporation from highly excited pre-fragments

Results | Comparison with ⁹³Zr data (*p*-induced reactions)

- INCL: maximum values at A = 92
- **GEM**: maximum values at N = 50 and jumps appears in all the panels
 - → ${}^{93}Nb(p, pxn)^{A}Nb$: jump by GEM is smeared out by INCL others: INCL DO NOT disturb the jumps seen in GEM components

- 1. Introduction
- 2. Isotope Production in Proton- and Deuteron-Induced Reactions on ⁹³Zr at 50 MeV/u
- 3. Isotope Production in Proton-, Deuteron-, and Carbon-Induced Reactions on ⁹³Nb at 113 MeV/u
- 4. Summary

 Isotope-production cross sections for proton- and deuteron-induced reactions on ⁹³Zr and ⁹³Nb were obtained at RIKEN RIBF using inverse kinematics method.

- The calculations by PHITS reproduce the measured data generally well.
- But, further improvement of theoretical models is needed:
 - underestimation in *n*-deficient region in odd-*Z*
 - overestimation in isotope near the target nucleus
 - Exaggerated even-odd staggering
- The magic number is reflected in the isotope-production cross sections.
- The appearance of the jump at N = 50 depends on the relative fractions of the INC and evaporation components.

Collaborators (⁹³Zr + p,d @ 50 MeV/u exp.)

Kyushu University	S. Kawase, K. Nakano, Yu. Watanabe, J. Suwa
RIKEN Nishina Center	H. Wang, H. Otsu, N. Chiga, T. Sumikama, H. Sakurai, D.S. Ahn, H. Baba, S.D. Chen, M.L. Cortes, P. Doornenbal, N. Fukuda, T. Isobe, S. Kubono, I. Murray, H. Sato, Y. Shimizu, PA. Söderström, X.H. Sun, D. Suzuki, H. Suzuki, H. Takeda,K. Yoshida
Tokyo Tech.	S. Takeuchi, A. Hirayama, Y. Kondo, T. Nakamura, T. Ozaki, A. Saito, Y. Togano, T. Tomai, H. Yamada, M. Yasuda
University of Miyazaki	S. Kawakami, Y. Maeda, Y. Soudo
University of Tokyo	S. Koyama, M. Niikura, T. Saito
CNS, University of Tokyo	S. Masuoka, S. Michimasa, R. Nakajima, S. Shimoura
Niigata University	K. Chikaato, R. Hosoda, M. Takechi

Collaborators (⁹³Nb + p,d @ 113 MeV/u exp.)

Kyushu University	S. Kawase, K. Nakano, Yu. Watanabe, S. Araki, T. Kin
RIKEN Nishina Center	H. Wang, H. Otsu, H. Sakurai, D.S. Ahn, S. Chen, N. Chiga, P. Doornenbal, N. Fukuda, T. Isobe, T. Kubo, S. Kubono, M. Kurokawa, T. Matsuzaki, Y. Shimizu, T. Sumikama, PA. Söderström, H. Suzuki, H. Takeda, Ya. Watanabe, K. Yoshida
Tokyo Tech.	S. Takeuchi, Y. Togano, T. Nakamura, Y. Kondo, T. Ozaki, A. Saito, M. Shikata, J. Tsubota
University of Miyazaki	Y. Maeda, S. Kawakami, T. Yamamoto
University of Tokyo	S. Koyama, S. Momiyama, S. Nagamine, M. Niikura, T. Saito, K. Wimmer
CNS, University of Tokyo	M. Matsushita, S. Michimasa, S. Shimoura
Hokkaido University	M. Aikawa, A. Makinaga
Rikkyo University	Y. Shiga