Symposium on Nuclear Data 2020

Ag102 12.9 m	Ag103 65.7 m	Ag104 69.2m	Ag105 41.29 d	S ymposium on	Ag107 51.839 %	Ag108 2.37 m	Ag109 48.161 %	Ag110 24.6 s	Ag111 7.45 d	Ag112 3.130 h
Pd101 8.47 h	Pd102 1.02 %		Pd104	Pd105 22.33 %	N uclear	Pd107 6.5e+6 y	Pd108 26.46 %		Pd110 11.72 %	
Rh100 20.8 h	Rh101 3.3 y		Rh103	Rh104 42.3 s	Rh105 35,36 h	D _{ata}	2020 Nov.		Rh109 80 s	

Contribution ID: 37 Type: Oral Presentation

Isotope production in spallation reaction of 93Zr and 93Nb induced by proton and deuteron / 93Zr 及び 93Nb に対する陽子・重陽子入射核破砕反応からの同位体生成

Nuclear transmutation technology has been attracting attention as a method for treating high-level radioactive waste. One of the candidates is the spallation reaction using high-energy particles, especially for the nuclides with relatively small neutron-capture cross sections such as long-lived fission product (LLFP) 93 Zr. The accumulation of nuclear reaction data and the development of nuclear reaction models based on the data are indispensable for the accurate prediction of the amount of conversion of 93 Zr to stable nuclides and/or short-lived nuclides and residual long-lived nuclides after the transmutation. Therefore, under the ImPACT program (Period: 2014 –2018), we have measured isotope-production cross sections in proton- and deuteron-induced spallation reactions on LLFP 93 Zr and adjacent nuclide 93 Nb at RIKEN RIBF.

In the experiment, a 93 Zr beam at 50 MeV/nucleon and a 93 Nb beam at 113 MeV/nucleon were produced by inflight-fission of 238 U. These beams were irradiated to secondary targets containing hydrogen and deuterium to induce spallation reactions, and the product yields were analyzed by ZeroDegree Spectrometer to determine the product cross sections. The results are compared with the nuclear reaction models.

Primary author: Dr NAKANO / 中野, Kieta / 敬太 (JAEA / JAEA)

Presenter: Dr NAKANO / 中野, Kieta / 敬太 (JAEA / JAEA)

Session Classification: NuclearPhysics2