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Recently, fission-fragment mass properties of 258Md was measured in JAEA. The data
indicates a mixture of fission modes. We tried to calculate the fission properties of 258Md
using the Langevin model.

1 Introduction

It has been shown that fission has multiple modes, characterized by mass asymmetric fission
and mass symmetric fission [1-7]. In neutron-rich heavy element region, it is argued that several
fission modes coexist, with a significant change of their yields in accordance with the number
of neutrons contained in the fissionig nucleus. A typical example is found in the fermium
isotopes. The dominant mode transition is from the asymmetric splitting for 257Fm to the
shape symmetric one for 258Fm [8]. This transitions was interpreted as due to the lowering of
the fission barrier for symmetric fission toward heavier mass isotopes. Its important to know
the potential energy surface structure and nuclear’s deformation process to understand fission
mechanism in neutron-rich heavy element region [9].

At the JAEA tandem facility, fission of an exited compound nucleus 258Md was studied in
the reaction of 4He+254Es. Based on the systematics of the spontaneous fission [8], the nucleus
are located in the region where mass-symmetric fission dominates.

For the discussion of the experimental data, we made a calculation of fission using the
Langevin model. For the later discussion, we define three types of fission paths (modes); mass-
asymmetric fission (standard mode), symmetric fission with high total kinetic energy TKE
(supershort), and symmetric fission with low TKE (superlong).

2 Framwork

We use the fluctuation-dissipation model and employ the Langevin equations[10] to investi-
gate the fission process. The nuclear shape is defined by the two-center parametrization [11,12],
which has three deformation parameters, z0, δ, and α to serve as collective coordinates: z0 is
the distance between two potential centers, α is a mass-asymmetry parameter defined by (A1-
A2)/(A1+A2) using fragment masses, A1 and A2. The symbol δ denotes the deformation of the
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fragments defined as δ = 3(R‖R⊥)/(2R‖+R⊥), where R‖ and R⊥ are the half length of the axes
of an ellipse in the z0 and ρ directions of the cylindrical coordinate, respectively, as shown in
Figure 1 in Ref. [10].

We adopted the neck parameter ε=0.55 following the empirical relation in Ref. [9]. The
three collective coordinates are abbreviated as q, q = z,δ,α. For a given value of a temperature
of a system T , the potential energy is defined as a sum of the liquid-drop (LD) part, a rotational
energy and a microscopic (SH) part:

V (q, l, T ) = VLD(q) +
~
2l(l + 1)

2I(q)
+ VSH(q, T ), (1)

VLD(q) = Es(q) + Ec(q), (2)

VSH(q, T ) = E0

shell(q)Φ(T ), (3)

Φ(T ) = exp

(

−
aT 2

Ed

)

, (4)

Here, VLD is the potential energy calculated with the finite-range liquid drop model, given
as a sum of the surface energy ES [12] and the Coulomb energy EC . VSH is the shell correction
energy evaluated by the Strutinski method from the single-particle levels of the two-center shell
model. The shell correction has a temperature dependence expressed by a factor Φ(T), in which
Ed is the shell damping energy chosen to be 20 MeV [13] and a is the level density parameter.
At the zero temperature (T = 0), the shell correction energy reduces to that of the two-center
shell model values E0

shell. The second term on the right-hand side of Eq. (1) is the rotational
energy for an angular momentum l [10], with a moment of inertia at q, I(q).

The multidimensional Langevin equations [10] are given as

dqi
dt

=
(

m−1
)

ij
pi, (5)

dpi
dt

= −
∂V

∂qi
−

1

2

∂

∂qi

(

m−1
)

jk
pjpk − γij

(

m−1
)

jk
pk + gijRj(t) (6)

where i ={z,δ,α} and pi = mijdqj/dt is a momentum conjugate to coordinate qi . The
summation is performed over repeated indices. In the Langevin equation, mij and γij are
the shape-dependent collective inertia and the friction tensors, respectively. The wall-and-
window one-body dissipation [14-16] is adopted for the friction tensor which can describe the
pre-scission neutron multiplicities and total kinetic energy of fragments simultaneously [17].
A hydrodynamical inertia tensor is adopted with the Werner-Wheeler approximation for the
velocity field [18]. The normalized random force Ri(t) is assumed to be that of white noise, i.e.,
Ri(t)=0 and Ri(t)Rj(t)=2δijδ(t1 − t2). The strength of the random force gij is given by the
Einstein relation γijT =

∑

k gijgjk

3 Results and discussion

Figure 1 shows the calculated results of the FFMDs and TKE distributions of 258Md. FFMDs
show mass symmetric splitting. The peak of the TKE distribution is about 235 MeV. From
features,the supershort mode was dominant in the calculation results.

Figure 2 shows the evolution of each fission modes as a function of excitation energy of 258Md
(in this work, fission modes was defined in the range of mass numbers and TKE in Table 1).
The calculation shows that the standard mode decreases with excitation energy. It is considered
that this is because the shell structure responsible for mass-asymmetry decreases with excitation
energy.
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Figure 3 shows the fission pathways of each mode in the z − δ plane. From the 1st local
minimum(around {z,δ}∼{0.0,0.2}) to the 2nd local minimum(around {z,δ}∼{1.0,0.2}), the three
modes behave very similarly. But it can be seen that the standard mode branches first at z ≈ 1.3
and then the superlong mode branches at z ≈ 1.8.

Figure 4 shows the energy of the fissioning nucleus at each shape plotted as a function of
z. In Figure 4, the saddle point is located at z ≈ 1.3 in the standard mode, z ≈ 1.8 in the
superlong mode, and z ≈ 2.0 in the supershort mode, so it was found that the branch point
shown in Figure 3 is located at the saddle point. In particular, the saddle point of superlong
mode is close to that of supershort mode, the trajectory is very similar up to the saddle point
of superlong mode.

Figure 1: Calculation result of FFMDs(left) and TKE districution(right) at excitation energy
E∗ = 18MeV

Table 1: Mass and TKE region of each modes
mode Mass TKE

supershort 114≦Mass≦144 TKE>220MeV
superlong 114≦Mass≦144 TKE≦220MeV
standard 114>Mass,144<Mass TKE≦220MeV

Figure 2: Each mode count as a function excitation energy E∗
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Figure 3: Each mode trajectory in z − δ plane
on α = 0 potential energy surface
(The white square in the figure indicates the sec-
ond minimum point)

Figure 4: Each mode trajectory in z − V plane

4 Conclusion

In this work, the fission mode of 258Md was studied by trajectory calculation using a Langevin
equations. As a result, it was found that each of the three modes bifurcate around the exit point
of the 2nd local minimum on potential energy surface. Also, since supershort mode and superlong
mode have very similar trajectory behavior up to the saddle point of superlong mode.
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