Experimental program of nuclear data for accelerator-driven nuclear transmutation system using FFAG accelerator – First subprogram: spallation neutron measurement

JAEA	*K. Nakano, H. Iwamoto, S. Meigo, K. Nishio, K. Hirose,
	Y. Iwamoto, F. Maekawa, H. Makii, K. Okabe, R. Orlandi,
	A. Oizumi, D. Satoh, F. Suzaki, K. Tsukada,
Kyoto Univ.	Y. Ishi, Y. Kuriyama, T. Uesugi, H. Yashima

This work was supported by MEXT Innovative Nuclear Research and Development Program Grant Number 192201.

Background | Accelerator-Driven System

- Issue of High-Level radioactive Waste (HLW)
 - Minor Actinides (MAs) have high potential radiotoxicity: ²⁴¹Am ($T_{1/2} = 432$ y), ²⁴³Am ($T_{1/2} = 7370$ y), ²³⁷Np ($T_{1/2} = 2.14$ My)
- Accelerator-Driven System (ADS) is candidate of treatment of MAs
 - hybrid system combined with proton accelerator and subcritical core

Background Impact of reaction models on ADS development 2

However...

- nuclear data below 100 MeV is inadequate.
- reproducibility of theoretical models in this region is not enough.

Background Purpose

- Purpose:

To contribute to improve the prediction power of nuclear models,

- measure neutron production Double-Differential cross sections (DDXs)
- measure Thick-Target Neutron Yields (TTNYs)

by protons at several tens of MeV on Pb, Bi, and Fe.

- measure neutron energy spectrum down to several hundreds of keV.

In this poster,

experimental plan at FFAG and results of detector test at FRS is presented.

Experimental Plan at FFAG, Kyoto Univ.

Detector test at Facility of Radiation Standard (FRS), JAEA

In advance of the experiment at FFAG, detector test was conducted to check the response and detection efficiency at FRS, JAEA.

Facility	FRS, JAEA
Beam	neutron at 14.8 MeV (from $d - t$ reaction)
Detector	 Liq. scintillator, NE213 (8mmΦ × 20mmL) ²³⁷Np fission chamber

TOF vs charge histogram for NE213

Results of FRS experiment

Left: detection efficiency of NE213 Right: ADC spectrum of ²³⁷Np fission chamber

- The calculations almost reproduce the obtained data.
- However, further detector test and further analysis are needed to investigate the cause of the difference.

Summary

- New experimental campaign has been launched to obtain neutron production Double-Differential cross sections (DDXs) and Thick-Target Neutron Yields (TTNYs) necessary for development of Accelerator-Driven System (ADS).
- We plan to conduct the measurements of DDXs and TTNYs at FFAG facility at Kyoto University.
- In advance of the measurements,
 - detection efficiencies of NE213 and reaction rate of
 ²³⁷Np fission chamber was checked with 14.8 MeV neutron at FRS.
 - \rightarrow They agree with the calculations, but further studies are needed.
- Next year, the experiments will be conducted.