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New formula to describe the background strength in the binary breakup, which is induced
by the direct breakup process, is considered on the basis of the Migdal-Watson (MW) for-
mula. The strength of the direct breakup is calculated by the complex scaling method. We
have found that the extended MW formula, which is proposed in the present study, nicely
reproduces the strength of the direct breakup calculated by Complex Scaling Method.

1 Introduction

Inelastic scattering is a useful tool to explore the intrinsic structure of the excited states of
nuclei. In particular, the inelastic excitation of the nucleus to the resonant states above the
threshold for the particle decay, which is often called the breakup reaction, is very important
because we can pin down the intrinsic nuclear structure in the resonances by controlling the
detection of the exit channels, which are the combination of the emitted fragments. A typical
and good example about the inelastic scattering to the continuum can be seen in the breakup
reaction of 12Be into the a + 8He and ®He + %He channels [1]. In this experiment, the careful
multi-pole decomposition analysis (MDA) was performed, and the MDA analysis elucidates that
many resonant states with a sharp width of I'r < 1 MeV exist in the spins from J™ = 0 to 8T
[M]. The resonances in these channels appear in a close energy spacing with AE ~ 0.5 MeV in
the lower energy region below E, < 15 MeV.

In determining the resonance parameters, such as the resonance energies and the decay
widths, the evaluation of the non-resonant background strength is indispensable because the
resonant enhancements, which have a strong energy dependence, are embedded in the non-
resonant background contribution.

In order to extract the information about the resonance parameters precisely, it is quite
important to propose the appropriate analytic function for describing the non-resonant back-
ground contribution in the breakup reaction. In this article, we investigate the structure of
the non-resonant background strength in the binary system, which is generated by the direct
breakup process, and propose a new formula to evaluate the background contribution by ex-
tending the Migdal-Watson (MW) formula [2, B, @]. In the calculation of the strength for the
direct breakup, we employ the complex scaling method (CSM) [G], which is a powerful tool to



describe the few-body continuum states. From the CSM calculation, we check the applicability
of the extended MW formula to the evaluation of the background contribution for the binary
breakup. Here we consider the breakup of 2°Ne into o 4+ 0 because the 2°Ne nucleus is known
to be a typical example of the binary cluster system [7, §]

The organization of this article is the following. In section B, theoretical formulation is
explained. This section contains the explanation of CSM, the definition of the direct breakup and
the details of the computational setting. The original Migdal-Watson theory and its extension
are explained in section B. In section B, the strength function calculated by CSM is analyzed, and
the validity of the extended MW formula is discussed. The final section is devoted to summary.

2 Theoretical framework

2.1 Complex scaling method

In the present study, the direct breakup is defined by the one step transition from the initial
ground state to the final excited state embedded in the continuum. The background strength
generated by the direct breakup process is evaluated by the complex scaling method (CSM) [6].
In CSM, the transformation of the complex rotation with the rotation angle 6

U@)f(xr) = 2" f(e"r) = f° ()
is introduced for the arbitrary function of f(r). Here the rotation on r should be read as the

transformation on the radial part of the coordinate and hence, r — re®. The Schrédinger
equation transformed by this complex rotation becomes

HO9WY = E99Y | (2)
where U7 is defined by equation (1) and H? = U(9)HU(A)~". In the rotated Hamiltonian Hy,

the dynamical coordinates of r contained in H is complex rotated like H? = H (e®r). The
amplitude of the resonant wave function, which originally diverges in the asymptotic region, is
damped in the large distant region by this complex rotation and hence, the usual computation
technique for the bound state problem, such as the basis expansion method, is possible to apply.
The energy eigenvalues calculated from the CSM plus basis expansion technique become the
discrete and complex eigenvalue, E? — E? labeled by the eigenvalue number v. According to
the ABC theorem [6], the energy eigenvalues for the bound state are invariant, and the energy
eigenvalues for the resonances are clearly separated from the non-resonant continuum states in
the complex energy plane [6].

The CSM is possible to apply to the calculation of the strength function, which represents
the transition strength of the initial ground state (¥;) induced by the external field of O, with
the multi-polarity A [8]. The definition of the strength function of S)(E) is given by

S\E) = Y| < Us|0xW; > P6(E - Ey) | (3)
f

where W denotes the final state belonging to the f-th eigenstate excited by the external field of
O,. By introducing the complex rotation given by equation () and the extended completeness
relation [6], the strength function is rewritten like

SA\(E) = —— S R\(E) (4)
with the response function of Ry(E) defined by

< V(01?198 >< B|09| ! >
E— EY

R\(E) = )



Here the ¥ is the solution of CSM, and the tilde in the bra-state means that the complex
conjugate is not taken for the radial part of the wave function [6].

2.2 Setting of theoretical calculation

In the present study, the direct breakup of ?°Ne into o + 60 is considered because the 2°Ne is
a typical example of the binary cluster system [9]. In the calculation of the o + 90 system, the
computational setting is the same as the setting in reference [[d]. The interaction potential V' is
composed of the nuclear (V) and Coulomb (Vi) potentials, and their explicit form is given by

V(R) = VN(R) + Ve(R) (6)
VN(R) = —154-exp(—0.1102R?) (7)
Vo(R) = 16- e; - erf(0.4805R) (8)

with the definition of the error function of
2 x
erfx:—/ex —t3)dt . 9
@) = —= [ e O

The computational process to prepare the initial wave function (¥;) and the final one (V)
for the a — 00 relative motion is also the same as those in reference [@]. The pseudo potential
with the harmonic oscillator wave function is included to exclude the Pauli’s forbidden states in
solving the Schrédinger equation with the potentials shown in equations (B), (@) and (B) [, §].

2.2.1 Operators for direct breakup

In the present analysis, the standard operator with the multi-polarity of A = 2 is used as the
external field inducing the direct breakup. Namely, in the calculation of the matrix element in
equation (B), we use O)—2 exciting the relative wave function of two clusters, such as

Ox—2 = V4TR*Y5(R) , (10)

where R denotes the relative coordinate of two clusters. In addition, we consider the higher
order operator for the monopole excitation, which is given by

Ox—0 = V4rR*Yyo(R) . (11)

The importance of the cluster excitation by this higher order operator has recently been pointed
out in references [12, [[3].

A special treatment is required in the calculation of the monopole transition using equa-
tion (). In the matrix element for the direct breakup in equation (B), the operation of the
monopole operator on the initial wave function in the ground state generates the superposition
of a series of the wave functions, which contains both of the ground and excited states. Thus, the
ground state component must be extracted from the product of the monopole operator and the
initial wave function, which is called the initial wave packet [2]. This exclusion can be achieved
by the replacement in the radial operator of R> — R2— < R? >, in which < R? > denotes the
expectation value of R? with the ground wave function.



3 Migdal-Watson theory and its extension

In the s-wave breakup of the binary system composed of the charge neutral particles, the strength
function can be expressed by the closed formula in the case of the short range limit of the initial
state. This formula is called the Migdal-Watson (MW) theory [3, @], which express the strength
function in terms of the effective range theory [H]. The detailed explanation of the MW formula
and its application to the breakup of the di-neutron system is reported in reference [?]. Here
we explain the essence of the MW formula and extend the formula to the case of the binary
breakup reaction including the effects of the the finite charge, the finite spin and the finite size.

In the MW theory, the monopole strength of the direct breakup with the relative energy F
for the binary fragments (Sx—o(E)) is given by

VE

So(B) < S T BELC

(12)

where the constants of A, B and C are function of the scattering length and the effective range
[2, B8, 4]. The MW formula in equation (IZ) must be valid for the breakup from the initial wave
packet strongly localized inside of the nuclear interaction.

The MW formula shown in equation ([2) is valid for the s-wave breakup from the initial
wave packet localized inside of the nuclear interaction, which corresponds to the tightly binding
system composed of the charge neutral fragments. Here we try to extend equation () so as to
describe the direct breakup reaction of the general binary systems, which have the finite charge,
the finite spin in the final scattering state (Sx.o(£)) and the finite size of the initial wave packet.

We extend equation () to the following function:

PA(ka)e_ﬁE
AE?2 4+ BE+C

S\E) x (13)
In this function, Pj\(ka) denotes the penetration factor with the momentum & for the binary
decaying fragments and the channel radius a. P, corresponds to the extension of the factor of
VE in equation (I2). If we consider the limit of & — 0 and A = 0, Py(ka) is reduced to vE.

On the contrary, 8 in the exponential term simulates the effect of the finite size of the initial
packet. 3 should be small in the case of the limit of the strong binding system, and vice versa.
We try to reproduce the background strength generated by the direct breakup by controlling
the five fitting parameters: A, B,C, a, 5.

4 Results

The fitting result using the extended MW formula in equation (I3) is shown in the two panels of
figure M. The quadrupole and monopole strengths for 2°Ne — o + 60 are shown in the left and
right panels, respectively. The calculated strength functions (solid curves) are nicely reproduced
by the extended MW formula (open circles). In both the panels, the solid circle with the error
bar means the resonance energy (£r) with the decay width (I'g) of the potential resonance in
the final state. The peak structure in the strength function nicely corresponds to the resonance
energy and the width and hence, the enhancement is originated from the resonance formation.

In the fitting analysis of the quadrupole transition, we do not use the original resonance
parameter (Eg = 4.2 MeV and I'p = 2.8 MeV) but the tuned parameters for the Breit-Wigner
part: A = 0.025, B= —0.21, C = 0.48, a = 5.5 fm and 8 = 0.015 MeV~! in equation (I3). In
the monopole transition,

the resonance parameter of the 07 resonance is £g = 3.3 MeV and I'r = 2.0 MeV. The
parameters used for the fitting to the monopole transition are A = 0.029, B = —0.19, C' = 0.33,



a = 5.0 fm and 3 = 0.015 MeV~!, in which (4, B, C) are modified from the original resonance
parameters.
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Figure 1: Comparison of the strength function of 2°Ne — a + 60 with fitting results by the
extended Migdal-Watson formula in equation (3). The left panel shows the quadrupole (S2(E))
transition, while the right one shows the monopole (So(E)) transitions. The « threshold energy
is set to the zero point in the abscissa. In both of the panels, the solid curve and the open
circles represent the strength function calculated from CSM and fitting results by equation (I3),
respectively. The solid circle with the error bar shows the resonance energy with the decay
width.

In the monopole transition, the excitation energy of the peak position corresponds to about
10 MeV, and this energy is much lower than the excitation energy of the monopole single particle

excitation, which reaches about 30 MeV in this mass region [I0]. One of the characteristic feature
in the « cluster excitation is that the strong monopole strength appears at the lower excitation
energy region as pointed out in the previous calculations [0, 0T]. Therefore, the extended

MW formula, which is developed by the present analysis, is important in the evaluation of the
low-lying strength of the monopole transition induced by the « cluster excitation.

5 Summary

In summary, we have investigated the feature of the strength function for the direct breakup
process, in which a bound nucleus dissociates into the binary fragments. The direct breakup
process is defined by the direct and one-step transition from the specific component of the binary
channel in the many-body bound state to the distorted wave for this channel, which is generated
by the nuclear and Coulomb potentials in the final scattering state. The transition strength of
the direct breakup is considered to be the main component of the non-resonant background
strength in the realistic breakup experiment.

In order to describe the background strength in the simple manner, we have considered the
analytic function by extending the Migdal-Watson (MW) formula [3, @, 5], which has recently
been discussed in the s-wave breakup of the di-neutron system [2]. The MW formula gives the
function of the quadratic energy denominator times the square root of energy, such as \/E/
(AE? + BE + C). This formula is valid for the s-wave binary breakup of the charge neutral
system, and the initial wave function is assumed to be strongly confined inside of the short range
nuclear interaction.

We have extended the MW formula so as to include the effects of the finite spins, the finite
charge and the finite size of the initial wave packet. First, the numerator of v/E is replaced by



the penetration factor of Py(ka) to take into account the effects of the finite spin (A) and finite
charge.

Furthermore, we have introduced the exponential damping factor, exp(—SFE), which is orig-
inated from the tunneling tail of the initial wave packet outside of the nuclear interaction.

The extended MW formula proposed for the direct breakup is

Py (ka) - exp(—BFE)
AE? + BE+C

(14)

We have tested the extended MW formula by fitting the strength function obtained from
the theoretical calculation of the direct breakup. Here we have evaluated the strength by the
direct breakup in 2Ne — a + 60 [@] on the basis of the formulation of the complex scaling
method (CSM) [6]. In the CSM calculation of the monopole and quadrupole transitions, we have
confirmed that the resonant peak appears around E ~ 5 MeV above the « threshold energy,
and the strength functions are nicely reproduced by the extended MW formula. Since we have
confirmed the availability of the MW formula in the direct breakup in the binary system, it is
important to apply the formula to other binary breakup reactions, such as ?Be — o + 8He [l].
The application to 2Be is now under progress.
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