ALICE FoCAL for RHICf-II Experiment

RIKEN/RBRC

Itaru Nakagawa

Transverse Single Spin Asymmetry 横偏極単スピン非対称性

横偏極した高エネルギー陽子+陽子衝突で、前方に生成される ハドロンに左右非対称性が観測される

PHYSICAL REVIEW D 88, 032006 (2013)

Inclusive cross section and single transverse spin asymmetry for very forward neutron production in polarized p + p collisions at $\sqrt{s} = 200$ GeV

A. Adare, ¹³ S. Afanasiev, ²⁹ C. Aidala, ^{40,41} N. N. Ajitanand, ⁵⁹ Y. Akiba, ^{53,54} H. Al-Bataineh, ⁴⁷ J. Alexander, ⁵⁹ K. Aoki, ^{33,53} L. Aphecetche, ⁶¹ J. Asai, ⁵³ E. T. Atomssa, ³⁴ R. Averbeck, ⁶⁰ T. C. Awes, ⁴⁹ B. Azmoun, ⁸ V. Babintsev, ²³ M. Bai, ⁷ G. Baksay, ¹⁹ L. Baksay, ¹⁹ A. Baldisseri, ¹⁶ K. N. Barish, ⁹ P. D. Barnes, ^{37,*} B. Bassalleck, ⁴⁶ A. T. Basye, ¹ S. Bathe, ^{6,9} S. Batsouli, ⁴⁹ V. Baublis, ⁵² C. Baumann, ⁴² A. Bazilevsky, ⁸ S. Belikov, ^{8,*} R. Bennett, ⁶⁰ A. Berdnikov, ⁵⁶ Y. Berdnikov, ⁵⁶
A. A. Bickley, ¹³ J. G. Boissevain, ³⁷ H. Borel, ¹⁶ K. Boyle, ⁶⁰ M. L. Brooks, ³⁷ H. Buesching, ⁸ V. Bumazhnov, ²³ G. Bunce, ^{8,54} S. Butsyk, ³⁷ C. M. Camacho, ³⁷ S. Campbell, ⁶⁰ B. S. Chang, ⁶⁹ W. C. Chang, ² J.-L. Charvet, ¹⁶ S. Chernichenko, ²³ C. Y. Chi, ¹⁴ M. Chiu, ²⁴ I. J. Choi, ⁶⁰ R. K. Choudhury, ⁵ T. Chujo, ⁶⁴ P. Chung, ⁵⁹ A. Churyn, ²³ V. Cianciolo, ⁴⁹ Z. Citron, ⁶⁰ B. A. Cole, ¹⁴ P. Constantin, ³⁷ M. Csanád, ¹⁸ T. Csörgő, ⁶⁸ T. Dahms, ⁶⁰ S. Dairaku, ^{33,53} K. Das, ²⁰ G. David, ⁸ A. Denisov, ²³ D. d'Enterria, ³⁴ A. Deshpande, ^{54,60} E. J. Desmond, ⁸ O. Dietzsch, ⁵⁷ A. Dion, ⁶⁰ M. Donadelli, ⁵⁷ O. Drapier, ³⁴ A. Drees, ⁶⁰ K. A. Drees, ⁷ A. K. Dubey, ⁶⁷ A. Durum, ²³ D. Dutta, ⁵ V. Dzhordzhadze, ⁹ Y. V. Efremenko, ⁴⁹ F. Ellinghaus, ¹³ T. Engelmore, ¹⁴ A. Enokizono, ³⁶ H. En'yo, ^{53,54} S. Esuni, ⁶⁴ K. O. Eyser, ⁹ B. Fadem, ⁴³ D. E. Fields, ^{46,54} M. Finger, ¹⁰ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁶ K. O. Eyser, ⁹ B. Fadem, ⁴³ D. E. Fields, ^{46,54} M. Finger, ¹⁰ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁵ C. ⁴⁶ K. O. Eyser, ⁹ B. Fadem, ⁴³ D. E. Fields, ^{46,54} M. Finger, ¹⁰ C. ⁴⁵ C

Primary Author : Manabu Togawa

INCLUSIVE CROSS SECTION AND SINGLE TRANSVERSE ...

FIG. 18. The x_F dependence of A_N for neutron production in the (upper) ZDC trigger sample and for the (lower) ZDC \otimes BBC trigger sample. The error bars show statistical uncertainties, and brackets show p_T -correlated systematic uncertainties. Systematic scale uncertainties listed in Table IV and polarization scale uncertainties are not included.

p↑+p 超前方中性子非対称性A_N

 $\pi \ge a_1 \operatorname{Reggeon}$ の干渉でうまく説明ができた。

横偏極能A_Nのラピディティ依存

ハドロン生成メカニズム

RHICのZDC検出器

RHICf実験@STAR (2017)

- 中性子
- Pi0
- ZDCにEMカロリメータを追加し高度化

RHICf detector

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber (44 X₀, 1.6 λ_{int})
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers (MAPMT readout)

2017 operation

- June 23 commissioning of polarized proton collisions, detector installation at the final position, detector commissioning
- June 24 27 physics data acquisition
 - 27.7hours, ~110M events
- 3 detector positions
 - TL center / TS center / Top position

11

13

PID

π^0 Performance

- π^0 peak with ~10 MeV/ c^2 width
 - 3σ region selected as π^0 candidates
- $p_{T} < 1.0 \; {\rm GeV}/c$
- $0.2 < x_F < 1.0$

観測した左右非対称性

					<u>交通アクセス</u> お問い合わせ English :	Site	報道関係者の方	理研在籍者・OBの	方 理研寄附金
_					🔓 理化学研究所		RIKEN X JI	マガ Google"カスタム地	k索 検索 P
	\neg			\neg	理研について 研究室紹介	▶ 研究成果(プレスリリース)	広報活動	産学連携	採用情報
	\wedge	レン			<u>Home</u> > 研究成 <u>果(ブレスリリース)</u> >	<u>研究成果(プレスリリース)2020</u>			
		/ /						in the	ね! 27 🏾 🎔 ツイート
					2020年6月23日 理化学研究所 東京大学宇宙敏研究所 名古屋大学 日本原子力研究開発機構			← 前の記事 ↑ 一」	<u>覧へ戻る</u> → <u>次の記事</u>
					陽子衝突からの左右非	^ド 対称なπ中間子生成			
					ー粒子生成の起源に迫る新7 	たな発見一			央語ページ
					理化学研究所「現研)仁料加速器科学好 京大学宇宙線研究所のさこ徳志准教授、 センターの公田聖研究主幹らが参画する ク)」 ¹¹¹ を使って、反対方向に運動する 持つことを発見しました。	研究センター放射線研究室の後藤雄二先任 名古屋大学宇宙地球環境研究所・素粒子 5 <u>国際共同研究グル−プ</u> は、米国ブルック 5陽子同士の衝突により、衝突位置の <u>起前</u>	研究員、キム・ミンホ国態 宇宙起源研究所の伊藤好4 ヘプン国立研究所(BNL) <u>方^[2]に生成される「中性</u> ;	祭プログラム・アソシエ-	イト(研究当時)、東 開発機構先端基礎研究 器 <u>「RHIC(リッ</u> 大きな左右非対称度を
					陽子には、地球の自転に似た「スピン」 す。偏極した陽子を何かの粒子に戦突さ 側で非対称になることが知られており、 子衝突での粒子生成に対する理論・計算 も、その発展が望まれています。	と呼ばれる向きを表す性質があります。 5 せると、生成されるπ中間子の生成量が その起源として、 <u>クォーク^[4]やグルーオ</u> 草の構築は積年の研究課題であり、高エネ	スピンの向きは人為的にそ 偏極陽子の衝突の軸方向は ン ^[4] の直接散乱に基づく3 ルギーの宇宙線が大気中	そろえることができ、これ こ対して、元の陽子のスヒ 理論「 <u>摂動QCD^[5]」</u> で説 で起こす「 <u>空気シャワー</u> !	れを「偏極」と呼びま ごンの向きの左側と右 別されてきました。陽 ⁶ 」の理解のために
Open Acc	ess								
Transv Produ	verse Sing ction in Po	lle-Spin Asyr plarized $p+ extsf{}$	nmetry f p Collisio	or Very Fors at $\sqrt{3}$	Forward Neutral Pion $\overline{s}=510~{ m GeV}$				
M. H. Kim, Ljubicic, Y S. Torii, A. Phys. Rev	O. Adriani, E. Be . Makino, H. Mer Tricomi, M. Uen . Lett. 124 , 2525	erti, L. Bonechi, R. D'A njo, I. Nakagawa, A. (o, and Q. D. Zhou (Rł 01 – Published 22 Ju	Alessandro, Y. Dgawa, J. S. P. HCf Collabora ne 2020	Goto, B. Hono ark, T. Sako, N ation)	g, Y. Itow, K. Kasahara, J. H. Lee, T. I. Sakurai, K. Sato, R. Seidl, K. Tanic	la,		K More	
Article	References	No Citing Articles	PDF	HTML	Export Citation				
>	ARSTR	ACT			_	Issue			
	ADJIK					Vol. 124, Is	Vol. 124, Iss. 25 — 26 June 2020		
Transverse single-spin asymmetries of very forward neutral pions of collisions allow us to understand the production mechanism in ter					s generated in polarized $p+p$				

RHICf-II実験計画(2024)

- 大立体角化
- $p^{\uparrow} + A$

	Year	Species	Energy [GeV]	Wks	Rec. L	Samp. L	Samp. L (all-z)
2023	Year-1	Au+Au	200	16.0	$7 \mathrm{nb}^{-1}$	$8.7 { m nb}^{-1}$	34 nb^{-1}
2024	Voar-9	<i>p</i> + <i>p</i>	200	11.5		48 pb^{-1}	267 pb^{-1}
	Tear-2	<i>p</i> +Au	200	11.5		$0.33 \ {\rm pb}^{-1}$	$1.46 \ { m pb}^{-1}$
	Year-3	Au+Au	200	23.5	14 nb^{-1}	26 nb^{-1}	$88 \ \mathrm{nb}^{-1}$
	Year-4	<i>p</i> + <i>p</i>	200	23.5	_	149 pb ⁻¹	$783 \ {\rm pb}^{-1}$
	Year-5	Au+Au	200	23.5	14 nb^{-1}	$48\mathrm{nb}^{-1}$	$92 \mathrm{nb}^{-1}$
	2020/7/2		偏極陽	子ビー	- ム		

lf extended

EM 効果

FoCAL ALICEの前方カロリメータ高度化計画

4) Total number of silicon sensors: 396 x 5 = 1,980 sensors

5) Total number of readout ch.: (8 x 9) x 1,980 = 142,560 ch

+396 FEE PCB, 180 aggregator boards, 8 CRU

HCal: ~2K channels

Timescale till Run-4 8

Run4に向けて開発中

2020/7/2

	2019	2020	2021		2022	2023	2024	2025	2026	2027
	Q4	Q1 Q2 Q3 Q4	Q1 Q	2 Q3 Q4	Q1 Q2 Q3 Q4					
LHC		LS2		Run-3	}			LS3		Run-4
Lol										
R&D										
Test beam										
TDR										
Final design										
Production, construction, test of module										
Pre-assembly, calibration with test beam										
Installation and commissioning										
Physics data taking										

ALICE-FoCal

FoCal-E basic design

RHICf vs FoCAL Performance

150

200 Longitudinal size (mm)

	RHICf	FoCAL Prototype				
Acceptance	4cm x 4cm + 2cm x 2cm	8cm x 9cm x 2 units				
Radiation Length	44X ₀	20X ₀				
Interaction Length	1.6 λ_{int}	~0.8λ _{int} ?				
Position Layer Resolution	100µm	~10µm?				
Energy Resolution	<3%	3.6%				
Position Detector	GSO-bar	MAPS(Under development)				
Arm1 calorimeter	cope RHICf	2 3 4 5 LG layer HG layer FoCAL				

RHICfとRHICf-IIの立体角比較

→ Series of dedicated position measurement becomes one shot measurement!

π^0 Asymmetry Preliminary Results

p[↑] + *A* 中性子とπ⁰非対称性

核子励起のpi0/pi+崩壊チャンネルの違いを見ることになる?

まとめ

- スピン物理には偏極度陽子+陽子・原子核衝突
 で0度方向のハドロン生成に巨大な非対称性が
 出る
- またそのメカニズムはよくわかっておらず、魅力的なテーマ
- RHICfで位置分解能の高いEMカロリメータを稼働させることで、中性子にに加えpiOにも大きな非対称性があることがわかった。
- この現象をEICで見るとどう見えるのか?

Backup

E704~代表的な実験

<40%の大きな非対称性が観測された

Initial State Effect

Final State Effect

+ 高次ツイスト効果

のエネルギー依存性

LHC forward (LHCf) Experiment

