Run 15 TSSA of Open Heavy Flavor Electrons at Midrapidity (5)

Dillon Fitzgerald Advisor: Christine Aidala 07/01/2020

Reminder

Last update -- 04/29/2020

- Progress on open heavy flavor electron transverse single spin asymmetry was presented for the inclusive electron spectrum (before background asymmetry/fraction corrections)
 - $A_N(p_T)$ square root formula (yellow, blue)
 - $A_N(p_T)$ relative luminosity formula (yellow (left, right), blue(left, right))
 - Comparisons between results and extraction of systematic error from difference of sqrt and lumi formulas

For This Talk:

- Background fraction calculation -- procedure and results
 - Closely follows procedure outlined in an1340 corresponding to PPG223

Reminder

- Currently have A_N^{S+B} for different formulas and independent data samples
 - [sqrt(yellow, blue), lumi(yellow left, yellow right, blue left, blue right)]
- Need to calculate background fractions and calculate/aggregate background asymmetries such that A_N^S can be extracted as shown here

Here
$$A_N^S = A_N^{OHF \rightarrow e}$$

$$\begin{split} A_{N}^{S} &= \frac{A_{N}^{S+B} - rA_{N}^{B}}{1-r} \\ \sigma_{A_{N}^{S}} &= \frac{\sqrt{(\sigma_{A_{N}^{S+B}})^{2} + r^{2}(\sigma_{A_{N}^{B}})^{2}}}{1-r} \end{split}$$

Background Fractions from PPG223

- Background sources for this analysis and PPG223 are shown here
- Need to recalculate background fractions using my binning and curated electron candidate sample
- Consider the following backgrounds:

Background Fractions from PPG223

- Background sources for this analysis and PPG223 are shown here
- Need to recalculate background fractions using my binning and curated electron candidate sample
- Consider the following backgrounds:
 - Hadron contamination (misidentified hadrons)

Background Fractions from PPG223

- Background sources for this analysis and PPG223 are shown here
- Need to recalculate background fractions using my binning and curated electron candidate sample
- Consider the following backgrounds:
 - Hadron contamination (misidentified hadrons)
 - Photonic and non-photonic electrons
 - -- create an electron cocktail from simulation

Spin PWG Update 5 - Dillon Fitzgerald

Highest pT Bin -- Back to my binning...

Variable	Cut	Kinematic Range]				
emcdφ	< 3σ	1.5 GeV < p _T < 6.0 GeV]				
emcdz	< 3σ	1.5 GeV < p _T < 6.0 GeV]				
$ (E/p-\mu) = dep * \sigma $	< 2σ	1.5 GeV < p _T < 6.0 GeV	Bin #	1	2	3	4
zed	< 75	1.5 GeV < p _T < 6.0 GeV			-	Ū	
disp	< 5	1.5 GeV < p _T < 6.0 GeV					
χ ² /ndf	< 3	1.5 GeV < p _T < 6.0 GeV]				
nhits	> 2	1.5 GeV < p _T < 6.0 GeV	Pt	(1.5, 1.8)	(1.8, 2.1)	(2.1, 2.7)	(2.7, 6.0)
quality	== (63 or 31)	1.5 GeV < p _T < 6.0 GeV	Range				
conversion veto	1	1.5 GeV < p _T < 6.0 GeV	(GeV)				
n0	>1	1.5 GeV < p _T < 5.0 GeV					
prob	> 0.01	1.5 GeV < p _T < 5.0 GeV					
n0	> 3	5.0 GeV < p _T < 6.0 GeV					
prob	> 0.2	5.0 GeV < p _T < 6.0 GeV	1				

- Differing n0 and prob cuts above 5 GeV implemented to suppress hadron contamination to the few percent level in the 5-6 GeV bin of PPG223
- Spin sorting decreases statistics, 5-6 GeV bin is not viable... So currently have differing cuts within a single bin (2.7 6 GeV)

Proposal to limit range to 5 GeV in pT? n_{2.7-5}/n_{2.7-6} ~ 98%

Pt Bins

The following Pt bins are used for this analysis -- chosen by combining bins used in <u>PPG223</u>:

Bin #	1	2	3	4
Pt Range (GeV)	(1.5, 1.8)	(1.8, 2.1)	(2.1, 2.7)	(2.7, 5.0)

Hadron Contamination

- Two methods used to calculate fraction of candidates attributed to charged hadrons misidentified as electrons
 - Dep fitting method
 - Algebraic calculation with n0 survival rate
- Weighted average of both methods is used to calculate hadron contamination fraction
 - Difference between average value and values from either method are considered for systematics

Hadron Contamination -- dep Fitting

- True electrons have Gaussian dep distribution with $\sigma \sim 1$ and $\mu \sim 0$
- Hadron dep distribution has different characteristics
 - Accessed in data via n0 < 0 cut
 - Fit extracted for template in fitting the electron candidate distribution (normalization is the only free parameter)
- Electron candidate dep distribution fit with Gaussian + hadron dep template
 - Allows for extraction of both electron and hadron contribution
 - Hadron contamination fraction determined by ratio of the contributions in the dep cut region |dep| < 2

Hadron Contamination -- Algebraic Method

- Provides estimate that is independent of dep shape by using the survival rate of the n0 cut (accessed via electron candidate sample with dep<-6)
 - Electrons fire the RICH differently than charged hadrons, and therefore have a different survival rate
- The following system of equations can then be used to isolate the number of hadrons in our electron candidate sample:

$$n_{non0} = n_e + n_h$$
 $n_{h,n0} = \epsilon_h (n_{n0} - \epsilon_e n_{non0}) / (\epsilon_h - \epsilon_e)$

$$n_{n0} = \epsilon_e n_e + \epsilon_h n_h$$

Hadron Contamination

Spin PWG Update 5 - Dillon Fitzgerald

Electron Cocktail Simulation

- Electron cocktail created from single particle electron simulations
 - Simulation details outlined extensively in an1340
- pT weighting based on measured PHENIX cross sections
 - Still needs to be normalized w.r.t. Inclusive electron spectrum!
 - We have a handle on the photonic vs. non-photonic fraction of electrons in our sample via the survival rate of the conversion veto cut, and can use this fact for normalization

Conversion Veto Survival Rates

- 2x conversion veto window size (green) was used in PPG223
- ϵ_{uc} extracted from survival rate histo (hadrons in data)
- ϵ_{p} extracted from simulation (not shown here)
- n_e^{p} and \tilde{n}_e extracted from e p_T spectrum with and without conversion veto cut

Spin PWG Update 5 - Dillon Fitzgerald

Background Fraction Calculation

Spin PWG Update 5 - Dillon Fitzgerald

Background Fraction Calculation

Spin PWG Update 5 - Dillon Fitzgerald

Next Steps

- Bunch shuffling cross check
- A_Nsinφ modulation cross check
- Background Correction
- Gather systematics

Next Steps

- Bunch shuffling cross check
- A_{N} sin ϕ modulation cross check
- Background Correction
- Gather systematics

Does the order in which these are completed matter?

For Your Information

I have been tracking my analysis progress on the web: http://www-personal.umich.edu/~dillfitz/PHENIX_Analysis/index.html

A_N(p_T) plots can be found at (see various subdirectories for formula comparisons): http://www-personal.umich.edu/~dillfitz/PHENIX_Analysis/Asymmetry_Ana/1.5GeV_6GeV/pTBins/

For electron ID selection requirements and motivating histograms, see: http://www-personal.umich.edu/~dillfitz/PHENIX_Analysis/Open_Heavy_Flavor_Ana/electronID_and_spectra/lin_y/

