Choice of μ_R , μ_f and μ_F and systematic uncertainty of JETPHOX

Zhongling Ji

Stony Brook University

June 8, 2020

Problems from preliminary plot:

- Why $\mu_R = \mu_f = \mu_F = p_T/2$ agrees best with data?
- Why there is a kink at $p_T = 17$ GeV?
- Is μ_R = μ_f = μ_F a good choice to explore JETPHOX systematic uncertainty?

Motivations

- Most of direct photon measurements agree best with $\mu_R = \mu_f = \mu_F = p_T/2$.
- There is large systematic uncertainty in JETPHOX from choice of μ_R .
- ATLAS direct photon papers vary μ_R , μ_f and μ_F independently to study JETPHOX systematic uncertainty.
- Good news: there is well established method to set optimal μ_R and it is very easy to use.
- There is also similar method to choose μ_f and μ_F , but it is hard to calculate.
- Systematic uncertainty from μ_F is much smaller than that from μ_R or μ_f .

Rusummation by renormalization group equation (RGE)

• The β function of the running coupling $\alpha_s(\mu^2)$:

$$\frac{d\alpha_s(\mu^2)}{d\ln\mu^2} = \beta(\alpha_s) = -b_0\alpha_s^2(\mu^2)$$
$$\Rightarrow \alpha_s(\mu^2) = \frac{\alpha_s(\mu_0^2)}{1 + b_0\alpha_s(\mu_0)\ln(\mu^2/\mu_0^2)} = \alpha_s\sum_n \left(-b_0\alpha_s\ln(\mu^2/\mu_0^2)\right)^n$$

where $b_0 = \frac{1}{4\pi} (\frac{11}{3} N_c - \frac{2}{3} N_f).$

• The RGE can sum all terms associated with β function into running coupling $\alpha_s(\mu^2)$.

Optimal choice of μ_R : principle of maximum conformality (PMC)

• Use RGE to remove β terms in cross section [PRD 86, 085026 (2012)]:

$$\begin{split} \sigma &\sim \alpha_s(\mu^2) \left(1 + b_0 \alpha_s(\mu^2) \left(\ln \frac{\mu^2}{P^2} + C_{\overline{MS}}(x) \right) + \dots \right) \\ &= \alpha_s(\mu_0^2) \left(1 - b_0 \alpha_s(\mu_0^2) \ln \frac{\mu^2}{\mu_0^2} + \mathcal{O}(\alpha_s^2) \right) \left(1 + b_0 \alpha_s(\mu_0^2) \left(\ln \frac{\mu^2}{P^2} + C_{\overline{MS}}(x) \right) + \mathcal{O}(\alpha_s^2) + \dots \right) \\ &= \alpha_s(\mu_0^2) \left(1 + b_0 \alpha_s(\mu_0^2) \left(\ln \frac{\mu_0^2}{P^2} + C_{\overline{MS}}(x) \right) + \dots \right) + \mathcal{O}(\alpha_s^3) \end{split}$$

where P^2 is some physical scale and $C_{\overline{MS}}(x)$ is a function depends on kinematic variables x and renormalization scheme \overline{MS} .

- ▶ Sum β terms into $\alpha_s(\mu_{PMC}^2)$: $\ln \frac{\mu_{PMC}^2}{P^2} + C_{\overline{MS}}(x) = 0 \Rightarrow \mu_{PMC} = Pe^{-C_{\overline{MS}}(x)/2}$.
- Changing $\mu \to \mu_{PMC}$, σ does not change at $\mathcal{O}(\alpha_s^2)$ (NLO), but RGE can sum all terms associated with β function.

Process for direct photon production

- ▶ ~85% direct photons are produced by $q + g \rightarrow q + \gamma$ in pp collisions.
- ▶ $q + g \rightarrow q + \gamma$ and $q + \bar{q} \rightarrow g + \gamma$ are related by crossing symmetry.

μ_{PMC} for direct photon production

► The physical scale in both processes is p_T , so we can use NLO $q\bar{q} \rightarrow g\gamma$ results from [Nucl. Phys. B 297, 661 (1988)]. Only the terms associated with $b_0 = \frac{1}{4\pi} (\frac{11}{3}N_c - \frac{2}{3}N_f)$ are interested:

$$\sigma_{NLO}^{q\bar{q}\to g\gamma} \sim b_0 \left(\int_{\frac{x_1}{2}}^{1-\frac{x_2}{2}} dv \left(v^2 + (1-v)^2 \right) \ln \frac{\mu^2}{\hat{s}} - 2 \int_{\frac{x_1}{2}}^{1-\frac{x_2}{2}} dv \left(v(1-v) - 1 \right) \right) + \dots \right)$$

$$\Rightarrow \mu_{PMC} = \sqrt{\hat{s}} \cdot \exp \left(\frac{\int_{\frac{x_1}{2}}^{1-\frac{x_2}{2}} dv \left(v(1-v) - 1 \right)}{\int_{\frac{x_1}{2}}^{1-\frac{x_2}{2}} dv \left(v^2 + (1-v)^2 \right)} \right)$$

$$= p_T \sqrt{2 + e^{y_\gamma - y_J} + e^{y_J - y_\gamma}} \cdot \exp \left(\frac{-\frac{5}{6} + \frac{x_1}{2} - \frac{x_1^2}{2} + \frac{x_1^3}{24} + \frac{x_2}{2} - \frac{x_2^2}{2} + \frac{x_2^3}{42}}{\frac{2}{3} - \frac{x_1}{2} + \frac{x_1^2}{4} - \frac{x_1^2}{12} - \frac{x_2}{2} + \frac{x_2^2}{4} - \frac{x_2^3}{12}}{\frac{2}{12}} \right)$$

by using kinematics in run 6 paper [PRD 86, 072008 (2012)].

p_T factor in μ_{PMC}

 p_T factor vs (x_1, x_2) with $y_\gamma = y_J = 0$ for 6 GeV $< p_T <$ 30 GeV and $|\eta| < 0.25$

After considering y_γ ≠ 0 and y_J ≠ 0 but limited by central arm, the p_T factor varies from 0.54 to 0.58.

Optimal choice of μ_f and μ_F

- Idea: sum parton multiple splittings into PDF by DGLAP equations.
- Method: use NLO splitting process to decide μ_f for LO PDF [Eur. Phys. J. C 77, 218 (2017)]:

$$\sigma_{\textit{NLO}}^{\textit{splitting}}(\mu_0) = |\mathcal{M}^{LO}|^2 \otimes \textit{PDF}(\mu_0) \otimes rac{lpha_s}{\pi} \textit{P}^{\textit{real}}(z) \ln rac{\mu_f}{\mu_0}$$

where $P^{real}(z)$ are the splitting functions belonging to real emission.

- Difficult: need convolutions with PDF and iterations.
- ▶ Physical meaning of μ_f : process with energy lower than μ_f included in $PDF(\mu_f)$, higher than μ_f included in hard matrix element $|\mathcal{M}^{NLO}(\mu_f)|^2$.
- Conclusion: still use μ_f and μ_F as p_T , $p_T/2$ and $2p_T$, but vary them independently to explore the systematic uncertainty.

Systematic uncertainty from $\mu_{\rm f}$ and $\mu_{\rm F}$

Cross section ratios with same μ_R (first letter) but different μ_f (second letter) and μ_F (third letter). M for $0.56p_T$, L for $p_T/2$, H for $2p_T$.

- Red and black are similar, green and blue are similar, so the differences mainly come from µ_f.
- Compare red with black, as well as green with blue, we see

$$\sigma(\mu_F = 2p_T) > \sigma(\mu_F = p_T/2).$$

- We also know $\sigma(\mu_R = p_T/2) > \sigma(\mu_R = 2p_T).$
- We choose LLH, LHH, LLL, HLL, HHL, HHH and use their maxima and minima as the bound of systematic uncertainties.

Conclusions and next step

- Central value of JETPHOX is shifted to the measurement and its systematic uncertainty is much reduced by using PMC.
- **b** By varying μ_f and μ_F independently, its systematic uncertainty is well explored.
- After tuning, JETPHOX shows better agreement with data.
- Next step is using PYTHIA and PISA to study background from charged pions in inclusive direct photon yield.