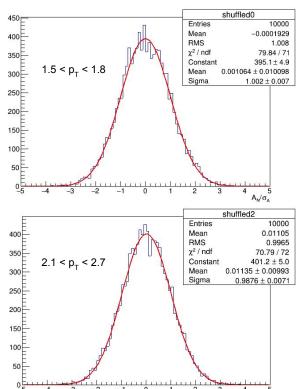
Run 15 TSSA of Open Heavy Flavor Electrons at Midrapidity (6)

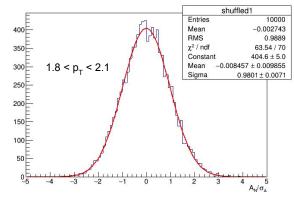
Dillon Fitzgerald Advisor: Christine Aidala 07/29/2020

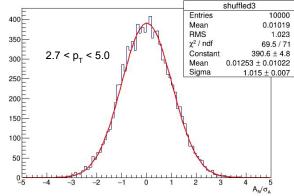
Reminder

Last update -- <u>07/01/2020</u>

Background fraction calculation procedure and results shown

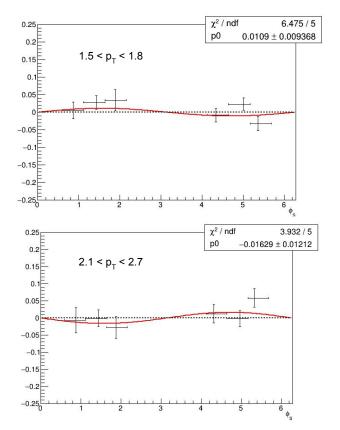

For This Talk:

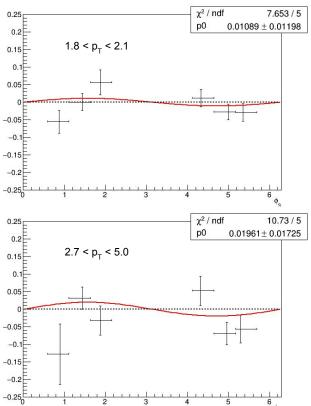

- Bunch shuffling cross check results
- A_Nsinφ_s cross check results
- Charge separated asymmetries
- New pre-background corrected asymmetries
 - Changed asymmetry library to reflect proper arm mapping (east=0, west=1 for dc analyses, opposite for EMCal analyses)
 - Using bin averages instead of bin centers



Bunch Shuffling

- 10,000 shuffles
- Mean consistent with 0 for each p_⊤ bin
- Sigma consistent with 1 for each p_T bin
- Conclusion: No need to assign additional systematics from bunch shuffling

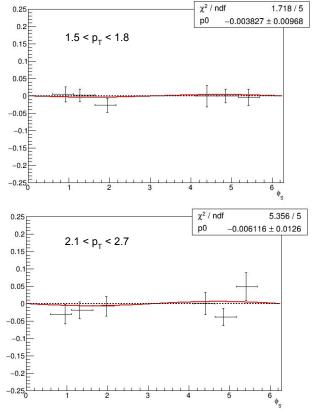


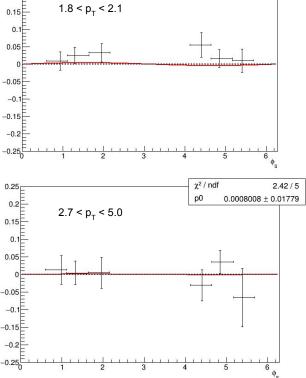


A_Nsinφ_s Modulation - Yellow Beam Fits

 Asymmetry values for yellow beam in each p_T bin are extracted from amplitudes of sinusoidal fits in φ_s

$$\circ$$
 p0 = A_N(p_Tⁱ) +/- σ (p_Tⁱ)




Spin PWG Update 6 - Dillon Fitzgerald

A_Nsinφ_s Modulation - Blue Beam Fits

 Asymmetry values for blue beam in each p_T bin are extracted from amplitudes of sinusoidal fits in φ_s

$$\circ$$
 p0 = A_N(p_Tⁱ) +/- σ (p_Tⁱ)

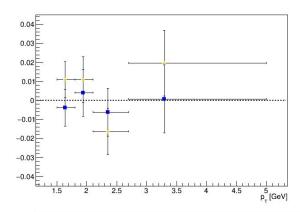
0.25

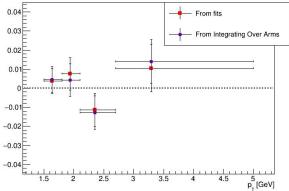
0.2

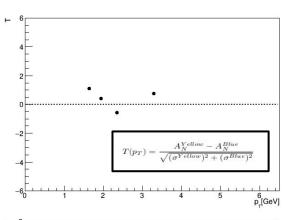
 χ^2 / ndf

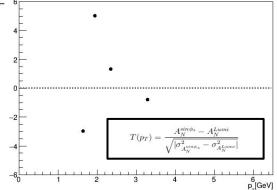
5.61/5

 0.004048 ± 0.0123

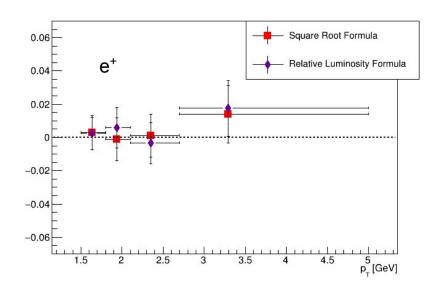


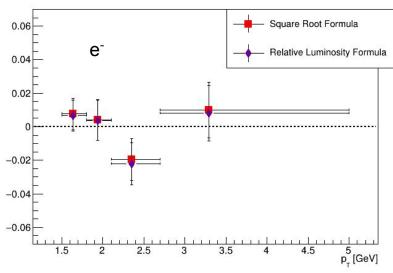

Spin PWG Update 6 - Dillon Fitzgerald


$A_N sin \phi_s$ Modulation - Comparison Plots

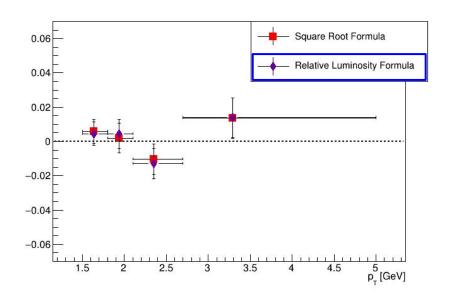

 Top plot shows yellow and blue beam fit parameters extracted as asymmetries

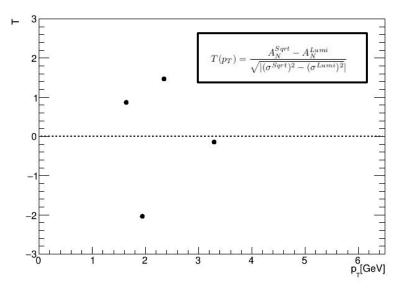
 Bottom plot shows weighted average from fits (red) compared to relative luminosity result (purple)





Charge Separated A_N (Before Background Correction)





- Charge separated asymmetries shown here, they seem to be consistent with one another
- Are charge separated asymmetries worth including in a publication?
 - Motivation: theory predicts A_N^{D0} and A_N^{D0bar} are different

Charge Combined A_N (Before Background Correction)

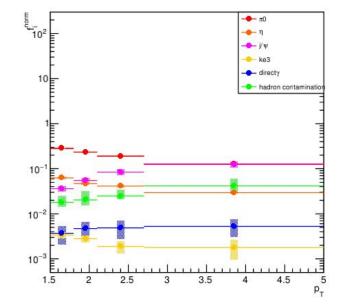
- Updated results, different than what was presented on <u>04/29/2020</u> **new results differ only by sign!**
 - Fixed asymmetry library to reflect that for drift chamber analyses, east arm corresponds to 0 and west arm corresponds to 1 (this is opposite for EMCAL analyses)

These measurements are used to calculate the lumi-sqrt systematic uncertainty, and are the inputs to the background corrected asymmetries

A_N Summary Table

- Relative luminosity formula used for A_N and statistical uncertainty

 Results before background correction are shown


$p_T \; [{ m GeV}]$	$\langle p_T \rangle \ [{ m GeV}]$	N_{e^\pm}	A_N^{S+B} (lumi)	$\sigma_{A_N^{S+B}}$ (stat)	$\ \sigma_{A_N^{S+B}} \ ({\rm sys:\ lumi-sqrt})$
1.5 - 1.8	1.639	37655	0.00460	0.00674	0.00134
1.8 - 2.1	1.936	23404	0.00432	0.00856	0.00235
2.1 - 2.7	2.349	22202	-0.0128	0.00879	0.00242
2.7 - 5.0	3.290	12771	0.0139	0.0116	0.000301

Background Correction

- Macro in place to calculate background corrected asymmetries
 - Photonic background pi0, eta, and gamma are consistent with 0, treated as a dilution only
 - Formulas shown here will be applied for the background corrected asymmetries
- Working on dealing with J/ψ asymmetry
 - Early checks of calculating background asymmetry from Run15 data do not look promising
 - <u>Midrapidity measurement from 2006</u> has very large statistical error bars
 - Current Goal: Toy MC study to analyze how dielectron decay kinematics dilute J/ψ asymmetry in hopes that the background correction of J/ψ→e can also be treated as a dilution factor only
 - Will update on this and background corrected asymmetries in the next few weeks

$$\begin{split} A_N^{OHF \rightarrow e} &= \frac{A_N^e - f_{h^\pm} A_N^{h^\pm} - f_{J/\Psi \rightarrow e} A_N^{J/\Psi \rightarrow e}}{1 - f_{h^\pm} - f_{J/\Psi \rightarrow e} - f_{\pi^0 \rightarrow e} - f_{\eta \rightarrow e} - f_{\gamma \rightarrow e}} \\ \\ \sigma_{A_N^{OHF \rightarrow e}} &= \frac{\sqrt{(\sigma_{A_N^e})^2 + (f_{h^\pm} \sigma_{A_N^{h^\pm}})^2 + (f_{J/\Psi \rightarrow e} \sigma_{A_N^{J/\Psi \rightarrow e}})^2}}{1 - f_{h^\pm} - f_{J/\Psi \rightarrow e} - f_{\pi^0 \rightarrow e} - f_{\eta \rightarrow e} - f_{\gamma \rightarrow e}} \end{split}$$

Next Steps

- Finish up analysis note -- goal to finish first draft by next week
- Present final (background corrected) asymmetries
- Present systematic uncertainties
 - lumi-sqrt
 - o recalculate asymmetries with limits of systematic uncertainty on background fractions
- Decide what plots to include in manuscript, preliminary request
- PPG formation (members identified and contacted)

For Your Information

I have been tracking my analysis progress on the web:

http://www-personal.umich.edu/~dillfitz/PHENIX Analysis/index.html

For bunch shuffling results, see:

http://www-personal.umich.edu/~dillfitz/PHENIX Analysis/Asymmetry Ana/bunchShuffling/

For A_{N} sin ϕ_{s} results, see:

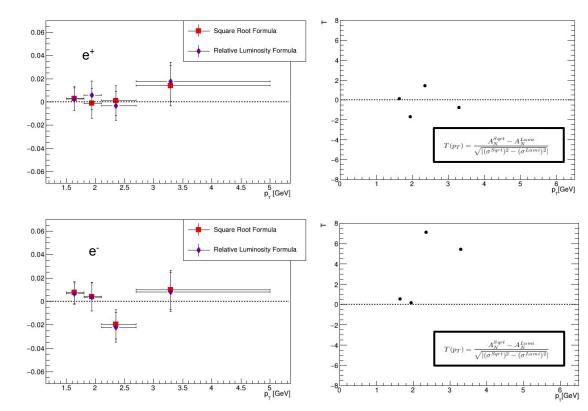
http://www-personal.umich.edu/~dillfitz/PHNIX_EAnalysis/Asymmetry_Ana/sinPhi/

For charge separated results, see:

http://www-personal.umich.edu/~dillfitz/PHENIX Analysis/Asymmetry Ana/chargeSep/pTBins/

For charge combined results, see:

http://www-personal.umich.edu/~dillfitz/PHENIX Analysis/Asymmetry Ana/pTBins/



Backup

Charge Separated A_N (Before Background Correction)

- Charge separated asymmetries shown here, they seem to be consistent with one another
- Are charge separated asymmetries worth including in a publication?
 - Motivation: theory predicts
 A_N^{D0} and A_N^{D0bar} are
 different
- Results for e⁻ t-test seem strange by eye (i.e. large t values in last 2 bins), but it is calculated in the same manner as the e⁺ results

