Lawrence Livermore National Laboratory

Scintillator Materials for Gamma Ray Spectroscopy February 4, 2011

Presented at RIKEN Nishina Ctr., Wako, Japan as part of the "SHOGUN Gamma Ray Spectrometer Symposium"

Funded by DHS/DNDO and DOE NA-22

N.J. Cherepy, <u>cherepy1@llnl.gov</u> S.A. Payne, B.W. Sturm, J.D. Kuntz, Z.M. Seeley, B.L. Rupert, R.D. Sanner, T.A. Hurst, P. Thelin, S.E. Fisher, O.B. Drury *Lawrence Livermore National Laboratory, Livermore, CA* 94550 K.S. Shah and team, *Radiation Monitoring Devices* A. Burger and team, *Fisk University* L.A. Boatner and team, *Oak Ridge National Laboratory*

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Overview

Problem: Accurate measurement of Doppler-shifted gammas produced in rare isotope beams during decay, fragmentation and nuclear reactions

Requirements for new detector materials:

- High energy resolution and stopping to discriminate gamma spectra
- Fast coincidence timing w/ low dead time to observe correlated events 2)
- Radiation hardness for high rate / long duration experiments 3)
- Low cost / maintenance starting materials; growth / ruggedness; 1000's of units 4)
- Fabrication into small cuboids to achieve close-packing and geometrical segmentation 5)

For radioisotope identification, gamma scintillators with high resolution, low cost and large volume are needed

Lawrence Livermore National Laboratory

N. CHEREPY Feb. 4, 2011

3

Inorganic single crystal and ceramic scintillators are being developed for gamma ray spectroscopy

Single crystals	Ceramics	Plastics	
Srl₂(Eu) Chine 2 3 4 5 Chine 2 3 4	GYGAG(Ce), 1 in ³	Bi-loaded polymers, 1 cm ³	
 Often hygroscopic/air-sensitive Fragile/brittle Complex to grow large crystals Can have gradients & non- uniformity 	 Unreactive with air, water Mechanically durable Large sizes (100 cm³ Nd:YAG ceramics commercially available) Increased activator uniformity Can form high melting point oxides 	 Unreactive with air, water Mechanically durable Large sizes, low cost 	
 All crystal structures possible Best energy resolution materials- LaBr₃(Ce), Srl₂(Eu) ~2.6% @ 662 keV 	 Requires cubic material Good energy resolution- GYGAG(Ce) Gadolinium Garnet ~4.5% @ 662 keV 	 Non-standard polymer required Bi-loading uniformity important Energy resolution so far ~7% @ 662 keV 	

Lawrence Livermore National Laboratory

N. CHEREPY Feb. 4, 2011

4

For gamma ray spectroscopy, $Srl_2(Eu)$ comparable to $LaBr_3(Ce)$ and GYGAG(Ce) is better than Nal(Tl)

Comparison of gamma spectra at 662 keV for $\sim(1^{\circ})^3$ scintillators reveals effects of resolution and photopeak efficiency, S_{PP}

For comparison, 1"x1" Ge photopeak efficiency, S_{PP} = 3.9%
S_{PP} defined as fraction of gammas intercepting detector that lead to photopeak

Lawrence Livermore National Laboratory

N. CHEREPY Feb. 4, 2011

SHOGUN symposium

6

Production of encapsulated Srl₂(Eu) underway

Property	LaBr ₃ (Ce)	Srl ₂ (Eu)	Comparison			
Melting Point 783 °C		538 °C	✓ Less thermal stress			
Handling Easily cleaves		Resists cracking	✓ Better processing			
Light Yield 60,000 Ph/MeV		90,000 Ph/MeV	✓ Higher			
Proportionality contribution	~2.0%	~2.0%	✓ Favorable			
Inhomogeniety	0%	>1% (current)	Impurities and surfaces being addressed			
Decay time	30 nsec	0.5-1.5 μsec	Fast enough to avoid deleterious signal pile-up			
Self-radioactivity	Self-radioactivity La ~ 3x NORM		✓ Less noise			
Hygroscopic / air sensitive? Very		Very	Similar			
γ absorption (2x3", 662 keV)	22%	24%	Similar			
300 200 200 200 150 100 200 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 100 100 100 100 100 1						

We have been working to identify an optimal Gd-based garnet scintillator for the past five years

Recently we have developed polymer scintillators with enhanced scintillation characteristics

Gamma Spectroscopy Plastic: Energy resolution similar to Nal(Tl)

Materials for future gamma spectrometers?

	Gamma Spectroscopy Scintillator	Z _{eff}	Light Yld (Ph/MeV)	En Res, 662 keV	Nonprop En Res, 662 keV	S _{PP} , 1 MeV, (15 mm x 15mm x 15 mm)
Single crystals	Nal(Tl)	50	40,000	7%	5.0%	2.2%
	LaBr ₃ (Ce)	44	63,000	3%	2.2%	2.8%
	Srl ₂ (Eu)	49	90,000	3%	2.2%	3.0%
Garnet ceramics	(Gd,Y, Lu) ₃ (Al,Ga) ₅ O ₁₂ (Ce)	47	50,000	4.5%	1.9%	3-9%
Plastics	Standard PVT	4.5	15,000	8% (Compton)	3.5%	0
	Current LLNL Bi-loaded polymers	26	10,000- 30,000	7%	3.5%	0.3%

Lawrence Livermore National Laboratory