Recent advancements in inorganic scintillator detectors

G. Bizarri

Radiotracer Development & Imaging Technology - Life Science Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8119, USA

This work was supported by the National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nuclear Nonproliferation Research and Engineering (NA-22) of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, grant number NNSA L806-316-PD05/NN2001000.

RIKEN, Japan

Outline

1. Introduction

- 1.1. Scintillation
- 1.2. Applications
- 1.3. Benchmark
- 2 2. SHOGUN
 - 2.1. LaBr₃ best candidat?
 - 2.2. Basic understanding
 - 2.3. LaBr₃ limitations
- 3 3. Recent discovery
 - 3.1. Where do we stand
 - 3.2. Pro and Con
 - 3.3. Perspectives

2. SHOGUN 3. Recent discover 1.1. Scintillation 1.2. Applications 1.3. Benchmark

Excitation sources

- Gamma-ray
- Neutrons
- Alpha...

Samples

- Single crystal
- Ceramic
- Composite...

Detectors

- PMT
- APD
- HybridPMT...

2. SHOGUN 3. Recent discovery 1.1. Scintillation 1.2. Applications 1.3. Benchmark

Various and Numerous

Common goal

Convert the high energy of the particles or $\gamma\text{-ray}$ into detectable light

$\gamma\text{-ray}$ spectroscopy

Medical imaging

G. Bizarri Inorganic scintillator detectors

1.1. Scintillation 1.2. Applications 1.3. Benchmark

Ideal scintillator

Ideal scintillator should have all these properties:

- Absorption
- Efficiency
- Speed
- Accuracy
- 2 Cost
 - Cheap

- \Rightarrow Density
- \Rightarrow Light output
- \Rightarrow Decay time, Rise time
- \Rightarrow Energy resolution
- \Rightarrow Crystal growth yield

Ideal scintillator does not exist

Application dependent requirements: different for High energy physics, homeland security or medical imaging applications

1.1. Scintillation 1.2. Applications 1.3. Benchmark

SHOGUN

Requirements

A	next	generation,	Scintillator-base	ed High-resOlution Gamı	ma spectrometer	for Unstable N	Nuclei (SHOG	UN) is
pro	pose	d that is idea	lly suited for in-	-beam experiments with	fast beams of r	rare isotopes	at the RIBF	with ve-
loc	ities	of 5060% of t	he speed of ligh	it. The array will be bas	ed on the novel	scintillator	LaBr ₃ (Ce), w	hich has
exe	ceptio	nal properties	making it the i	ideal material for such a	spectrometer.	ts very high	light output	and the
v	ery sh	ort decay time	of the scintill	ation light results in an	unprecedented e	energy resoluti	ion for a sci	ntillation
coi	unter	and a time re	solution that is	much faster than that	of NaI(TI) or HP(Ge detectors .	Furthermore	e, due to
the	e lar	ge attenuation	coefficient for γ	γ-rays , a compact array	can achieve a ve	ry high full-en	ergy peak effi	ciency.

Ideal scintillator

LaBr₃ scintillator? Can we do better?

2. SHOGUN

3. Recent discovery

2.1. LaBr₃ best candidat? 2.2. Basic understanding 2.3. LaBr₃ limitations

Where did we stand

1. Introduction
2. SHOGUN

2.1. LaBr₃ best candidat? 2.2. Basic understanding 2.3. LaBr₃ limitations

Step 1/5

Absorption mechanism

 $\gamma\text{-ray}$ interacts with the lattice only

Structural scheme

Energy scheme

G. Bizarri Inorganic scintillator detectors

1. Introduction 2. SHOGUN 2.1. LaBr₃ best candidat? 2.2. Basic understanding 2.3. LaBr₃ limitations

Step 2/5

Absorption mechanism

 $\gamma\text{-}\mathrm{ray}$ is converted into a high energy electron

Structural scheme

Energy scheme

Absorption

G. Bizarri Inorganic scintillator detectors

2. SHOGUN 3. Recent discovery 2.1. LaBr₃ best candidat?
2.2. Basic understanding
2.3. LaBr₂ limitations

Step 3/5

Multiplication mechanism

High energy electron creates $e/h\ pairs\ loosing\ its\ energy$

Structural scheme

Energy scheme

G. Bizarri Inorganic scintillator detectors

1. Introduction 2. SHOGUN

3. Recent discovery

2.1. LaBr₃ best candidat?
2.2. Basic understanding
2.3. LaBr₂ limitations

Step 4/5

Migration mechanism

e/h pairs migrate toward the dopant ions

Structural scheme

Energy scheme

G. Bizarri Inorganic scintillator detectors

2. SHOGUN 3. Recent discovery 2.1. LaBr₃ best candidat? 2.2. Basic understanding 2.3. LaBr₂ limitations

Step 5/5

Emission mechanism

 e/h pairs recombine on the dopant ions

Structural scheme

Energy scheme

G. Bizarri Inorganic scintillator detectors

2. SHOGUN

2.1. LaBr₃ best candidat?2.2. Basic understanding2.3. LaBr₃ limitations

Light output (1/3)

Formula

• LO =
$$\frac{1,000,000}{\beta E_g}SQ$$

Estimation for LaBr₃

- *E*_g=6.2 eV
- $\beta \sim 2$
- $\Rightarrow LO_{estimated} = 81,000 \text{ ph/MeV}$ $\Rightarrow LO_{measured} = 60,000 \text{ ph/MeV}$

Ideal scintillator: No

Energy loss as large as 20% - S or/and Q < 1

2.1. LaBr₃ best candidat?2.2. Basic understanding2.3. LaBr₃ limitations

Light output (2/3)

Quantum efficiency, Q

• Ce³⁺ energy levels vs Valence and Conduction bands

LaBr₃ energy level positions

- Spectroscopy
- First principle calculation
- \Rightarrow 4f/VB \sim 0.5 eV
- \Rightarrow 5d/CB \sim 1 eV

Ideal scintillator: No

Energy loss due to energy transfer - S < 1, Q = 1

2.1. LaBr₃ best candidat?2.2. Basic understanding2.3. LaBr₃ limitations

Light output (3/3)

Transfer efficiency, S

• Self Trapped Exciton (STE) to Ce³⁺ transfer

STE properties dependence

- 2 different STEs
- 1 does not transfer entirely
- \Rightarrow Transfer is efficient
- \Rightarrow But not perfect

Ideal scintillator: No

Light output can be improved: better S

G.	Bizarri		
Inc	organic	scintillator	detectors

2. SHOGUN

2.3. LaBr₃ limitations

Time response

Minimum of Tau λ³/(n⁵+4n³+4n)

Emission

STAGE 3:

1.8 Defending index

Energy carrie

migratice

Ideal scintillator: Yes

No delay due to the transfer. Ideal time response

2. SHOGUN 3. Recent discover 2.1. LaBr₃ best candidat 2.2. Basic understanding 2.3. LaBr₃ limitations

Energy resolution (1/2)

Formula

• E.R. =
$$\frac{2.35}{\sqrt{Number_{photoelectron}}}$$

- E.R. estimation for LaBr₃
 - Number_{photoelectron} \sim 9,500
- \Rightarrow E.R._{Estimated} = 2.4%
- \Rightarrow E.R._{measured} = 2.8%

Ideal scintillator: Yes

Ideal energy resolution at 662 keV

G.	Bizarri		
Inc	organic	scintillator	detectors

1. Introduction 2. SHOGUN 2.1. LaBr₃ best candidat?2.2. Basic understanding2.3. LaBr₃ limitations

Energy resolution (2/2)

E.R. vs Energy

• Degradation of E.R. under 50 keV

 $\Rightarrow E.R._{measured}^{662keV} = E.R._{theoretical}^{662keV}$ $\Rightarrow E.R._{measured}^{10keV} = 1.5 \ E.R._{theoretical}^{10keV}$

Non proportionality

• E.R. increases with increasing non proportionality

Ideal scintillator: Yes

Deviation of theoretical energy resolution under 50 keV

G.	Bizarri		
Inc	organic	scintillator	detectors

1. Introduction 2. SHOGUN 3. Recent discover 2.1. LaBr₃ best candidat?2.2. Basic understanding2.3. LaBr₃ limitations

Intrinsic activity

¹³⁸La γ -ray background

- \Rightarrow Lanthanum \in 0.09% ¹³⁸La
- \Rightarrow Half-life of 1.05E¹¹ years
- \Rightarrow 1.5 Bq/cc in LaBr₃

Energy spectrum

- ¹³⁸Ba by electron capture: Gamma-ray at 1436 keV + 32 keV Ba x-ray
- ¹³⁸Ce by β-emission: Gamma-ray at 789 keV

Ideal scintillator: No

Application relevancy

2. SHOGUN 3. Recent discovery 2.1. LaBr₃ best candidat?2.2. Basic understanding2.3. LaBr₃ limitations

Cost

Structural parameter

- \Rightarrow Density [g/cm3] = 5.08
- \Rightarrow Melting point [K] = 1116
- \Rightarrow Thermal expansion coefficient $[10^{-6}/C] = 8$ along C-axis
- \Rightarrow Cleavage plane: <100>
- \Rightarrow Hygroscopic: High

Ideal scintillator: No

Crystal growth yield is low.

2. SHOGUN

2.1. LaBr₃ best candidat 2.2. Basic understanding 2.3. LaBr₃ limitations

LaBr₃ summary

Pro

- Time response: 18 ns and Time resolution: 0.450 ns
- Energy resolution: 2.8% at 662 keV
- Light output: 60,000 ph/MeV

Con

- Cost: thermal anisotropy leading to low growth yield
- Light output: substantial energy loss
- Energy resolution: Degradation in the low energy range
- Hygroscopicity: High
- Intrinsic radioactivity: $^{138}\mbox{La}\ \gamma\mbox{-ray}$ background

Yes but...

Can we do better?

2. SHOGUN

3. Recent discovery

2.1. LaBr₃ best candidat?2.2. Basic understanding2.3. LaBr₃ limitations

Yes, we can

3.1. Where do we stand 3.2. Pro and Con

3.3. Perspectives

3.1. Where do we stand 3.2. Pro and Con

3. Perspectives

New scintillators

Recent development

CLLB

- Srl_2
- CsBa₂I₅ and BaBrI

Comparatif

Scintillator	Nal:TI	LaBr ₃ :Ce ³⁺	CLLB:Ce ³⁺	Srl ₂ :Eu ²⁺	CsBa ₂ I ₅ :Eu ²⁺	BaBrl:Eu ²⁺
Development (year)	60	10	4?	4?	1	1
Structure	Cubic	Hexa	Cubic	Ortho	Mono	Ortho
Band gap (est. in eV)	5.9	6.2	5.8	5.4	5.1	5.3
Density (g cm $^{-3}$)	3.67	5.1	4.2	4.5	5.0	5.0
Decay time (ns)	230	17	55	1,200	1,400	500
Luminosity (ph/MeV)	42,000	60,000	50,000	100,000	103,000	91,000
Energy resolution (%)	6.5	2.8	3.0	3.0	2.55	3.3
Detection efficiency (%)	30	26	-	31	36	35
Hygroscopicity	High	High	-	High	Low	Low

2. SHOGUN

3. Recent discovery

3.1. Where do we stand 3.2. Pro and Con 3.3 Perspectives

Light output

Criteria

- Band gap BaBrl:Eu²⁺ \sim 5.3 eV, CsBa₂I₅:Eu²⁺ \sim 5.1 eV
- Estimated Light output BaBrl:Eu^{2+} \sim 95,000 ph/MeV, CsBa_2I_5:Eu^{2+} \sim 100,000 ph/MeV
- Measured Light output

BaBrl:Eu $^{2+}\sim$ 91,000 ph/MeV, CsBa_2l_5:Eu $^{2+}\sim$ 100,000 ph/MeV

LaBr₃ vs BBI, CBI

Smaller band gap and better transfer efficiency

G.	Bizarri		
Inc	organic	scintillator	detectors

3.1. Where do we stand 3.2. Pro and Con

Proportionality

Gamma-ray response

Benchmark

•
$$\sigma_{np} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{Y(E_i)}{Y(^{137}Cs)} - 1\right)^2}$$

- $\Rightarrow \sigma_{np}(BaBrl) = 0.024$
- $\Rightarrow \sigma_{np}(CsBa215) = 0.009$
- $\Rightarrow \sigma_{np}(LaBr3) = 0.013$

LaBr₃ vs BBI, CBI

Better response for CBI

G. Bizarri		
Inorganic	scintillator	detectors

3.1. Where do we stand3.2. Pro and Con3.3. Perspectives

Energy resolution

Energy resolution at 662 keV

- \Rightarrow E.R.^{662keV} = 3.3%
- $\Rightarrow \mathbf{E.R.}_{CsBa2I5}^{662keV} = \mathbf{2.55\%}$

Energy resolution vs Energy

 Both scintillators give better E.R. under 50 keV

LaBr₃ vs BBI, CBI

Better energy resolution for CBI and BBI under 50 keV

2. SHOGUN

3. Recent discovery

3.1. Where do we stan 3.2. Pro and Con

Hygroscopicity

LaBr₃ vs BBI, CBI

Hygroscopicity is less in both cases

G. Bizarri		
Inorganic	scintillator	detectors

2. SHOGUN 3. Recent discovery 3.1. Where do we stan 3.2. Pro and Con 3.3. Perspectives

Time response

Criteria

- Time response
 - BaBrl:Eu $^{2+} \sim$ 450 ns, CsBa_2I_5:Eu $^{2+} \sim$ 1,200 ns
- Self absorption

 $\mathsf{BaBrI:}\mathsf{Eu}^{2+}\sim\mathsf{Not}\ \mathsf{detected},\ \mathsf{CsBa_2I_5:}\mathsf{Eu}^{2+}\sim\mathsf{Medium}$

LaBr₃ vs BBI, CBI

Slower than $LaBr_3$ but excellent for Eu^{2+} doped compound

2. SHOGUN

3. Recent discovery

1. Where do we stan

3.3. Perspectives

New grounds (1/2)

3.1. Where do we stan

3.3. Perspectives

New grounds (2/2)

Problems

- Limits are intrinsic to doped inorganic insulator
- Dopant intrinsic time response limits the decay time
- Dopant energy levels limit the band gap range available

Approaches

Description	Application	Advantages	Draw back
Semi conductor scintillators	Cryogeny	Fast	Thermal stability
Nano and composite scintillators	Any	Fast, low cost	How to absorb energy?

3.1. Where do we stand 3.2. Pro and Con 3.3. Perspectives

Fast moving research field

• Large improvement within the past 5/10 year

- Understanding the physics of scintillators
- Application via the improvement and discovery of high performance scintillators
- Exploration of new concepts in solid state detectors

Multidisciplinary collaboration

- Computational science
- Chemistry
- Physics
- Crystal growth
- Instrumentation...

3.1. Where do we stand3.2. Pro and Con3.3. Perspectives

Collaborators

Berkeley National Lab

Edith Bourret, Steve Derenzo, William Moses, Seng Choong, Martin Boswell, Steve Hanrahan, Martin Janecek, Christopher Ramsey, James Powell, David Wilson, Andrew Canning, Marv Weber, Yetta Eagleman, Gautam Gundiah, Ramesh Borade, Zewu Yan, Kathleen Brennan

Livermore National Lab

John Valentine, Stephen Payne, Nerine Cherepy

Wake Forest University

Richard Williams

Charles Darwin University

Jay Singh

Moscow State University

Andrei Vasiliev

Delft University

Pieter Dorenbos

S^t Gobain

Eric Mattman

RMD, Inc.

Kanai Shah

Institute Single Crystals

University of Tennessee

Chuck Melcher

