Development of an 8 x 8 array of LaBr₃(Ce) pixels for a gaseous Compton gamma-ray camera

SHOGUN workshop @ RIKEN, Saitama, JAPAN (2011. 2. 5)

Shunsuke KUROSAWA

Hidetoshi Kubo, Toru Tanimori, Kentaro Miuchi, Shigeto Kabuki, Joseph D. Parker, Atsushi Takada^a, Kazuki Ueno^b, Yuji Kishimoto, Satoru Iwaki, Naoki Higashi, Tatsuya Sawano, Kojiro Taniue, Kiseki Nakamura, Yoshihiro Matsuoka

Dept. of Physics, Graduate school of Science, Kyoto University, Kyoto, Japan

a) RISH / Kyoto Univ., Kyoto, Japan

b) RIKEN, Saitama, Japan

Contents

- Introduction
 - MeV gamma Astronomy / Medical imaging
 - Electron-Tracking Compton Camera (ETCC)
- Improvement of Angular resolution
 - $-LaBr_3$ array
 - Application using the ETCC + $LaBr_3$ array
- New readout system for LaBr₃ array
- Summary

Sensitivity in X / Gamma-ray Astronomy

Medical Imaging (functional image)

PET : E = 511keV SPECT : E < 360keV Narrow J Wide dynamic energy range New radioactive tracer with new radioisotopes

It is possible that we obtain various images: enzyme, protein reaction

Multi-radioisotope Imaging With wide energy range

Simultaneous observation of some metabolisms and interactions

	¹³⁹ Ce	¹³³ Ba	131	¹⁹⁸ Au	²² Na	¹⁸ F	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co
E [keV]	167	354	364	412	511 1275	511	835	1116	1173 1333

Electron-Tracking Compton Camera (ETCC)

gaseous TPC

(time projection chamber) :
[containing μ-PIC(MPGD),
GEM (Sauli (1997), Inuzuka et al. (2004))]
--- energy and 3-D track of
Compton-recoil electron

Scintillation camera:

[Pixel array Scintillator] --- energy and position of scattered gamma ray

 Large FOV (~3str)
 Kinematical background rejection by comparison of two α angles

Reconstruct incident gamma ray event by event

Energy dynamic range: from 0.1 to ~10 MeV

Imaging with ETCC

Gaseous Time Projection Chamber (TPC)

Position resolution:120 µm

Position-Sensitive Scintillation Camera

2-D image in flood-field irradiation

SMILE Roadmap

SMILE Project Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment (10cm)³ ETCC (2006) SMILE-I

 Operation test of ETCC @ 35km
 Measurement of Diffuse cosmic and atmospheric gamma rays ~ 3hours (live time)

 (30cm)³ ETCC (2013) SMILE-II Observation of Crab or Cyg X-1 ~ 3hours
 (40cm)³ ETCC Iong duration balloon ~ 10days
 (50cm)³ ETCC All sky survey Orbiting balloon (~30days) or satellite

SMILE-I Flight

The balloon was Launched on Sep. 1, 2006 @ Sanriku Balloon Center JAXA / ISAS, Japan

diffuse cosmic γ rays

Launching

landing

Contents

- Introduction
 - MeV gamma Astronomy / Medical imaging
 - Electron-Tracking Compton Camera (ETCC)
- Improvement of Angular resolution

 LaBr₃ array
 - Application using the ETCC + $LaBr_3$ array
- New readout system for LaBr₃ array
- Summary

Improvement of Angular Resolution

To obtain a higher angular resolution / spatial resolution (≤ 1cm) Angular resolution of the Compton camera depends on the energy resolution of scintillator

LaBr₃(Ce) scintillator

Naked LaBr₃ pixel

Test of our cutting & polishing technique

Saint-Gobain BrilLanCe380 Size:\ophi38×38mm³

Size: 6×5×14mm³ pixel glass window : none Hermetic package : none

Put the crystal on single anode PMT (R6231) directly under the dry condition

Energy resolution (FWHM) 4.5 \pm 0.1 @ 356 keV 3.5 \pm 0.1 @ 662 keV

Assembly of LaBr₃(Ce) array

Using our technique, we cut $5.8 \times 5.8 \times 15.0$ mm³ pixels out of two $\phi 38 \times 38$ mm³ LaBr₃ crystals and assembled an 8×8 array.

Saint-Gobain BrilLanCe380 Size:\ophi38×38mm³

Dead space 1,700 mm² (S. G.) ¥ 500 mm² (Ours)

Effective area : 49 × 49 mm² (=PMT photocathode) Glass window : Quartz (t 2.3 mm) Hermetic package : Aluminum (t 0.5 mm)

6.1 mm pitch

54mm

20mm

Performance of each pixel

To estimate the performance without the effect of gain uniformity (~3) among 64 anodes of Multi-Anode PMT (H8500)

4ch readout with H8500

LaBr₃ array MAPMT HPK H8500

Readout of an array camera

► Flood field irradiation image

Energy resolution (FWHM) of each pixel @ 662 keV (¹³⁷Cs)

GSO $6 \times 6 \times 13 \text{ mm}^3 8 \times 8 \text{ array}$ Ave. $\pm \text{RMS}$: $10.8 \pm 1.0\%$

LaBr₃ $6 \times 6 \times 15$ mm³ 8×8 array Ave. ± RMS : **5.8 ± 0.9%** Energy (FWHM 12 11 \leq Resolution /) @ 662 keV [%] 10 9 8 6 5

Energy Resolution (2)

6×6×13 mm³ 8×8 array: FWHM(%)=(10.4±0.3) ×(E/662keV)^{-0.51±0.01} LaBr₃ 6×6×15 mm³ 8×8 array: FWHM(%)=(5.7±0.4) ×(E/662keV)^{-0.53±0.01}

9 arrays: Energy Resolutions (FWHM) @ 662keV

Eng. Res. (FWHM) @ 662 keV Ave. $\pm \sigma$: 6.0 \pm 1.0% (15mm-thickness)

 $\begin{array}{l} \textbf{5.6} \pm \textbf{0.8\%} \\ \textbf{(20mm-thickness)} \end{array}$

5.8±0.9% (Total, 576 pixels)

Setup of ETCC

Angular resolution

3.5 deg. (FWHM) @1.3 MeV (expected) (cf. 4.7 deg. for COMPTEL)

Spatial resolution (FWHM) @ 662 keV: 1.1 cm (detector – target: 15 cm)

Contents

- Introduction
 - MeV gamma Astronomy / Medical imaging
 - Electron-Tracking Compton Camera (ETCC)
- Improvement of Angular resolution
 - LaBr₃ array
 - Application using the ETCC + $LaBr_3$ array
- New readout system for LaBr₃ array
- Summary

Improvement of Reading System

Charge-division method (Anger logic)

Individual reading of each pixel

Multi-hit event rejection

Random coincidence rejection

Simpler position capitulation

Compton scattering Gamma ray Scintillator array

New Readout System

Head Amp Unit CP80190(Clear Pulse)

- 64ch readout
- Using only discrete devices.
- Input dynamic range is variable by replacing feedback capacitor. (Adjusted to <750pC)
- Power Consumption: 1.2W
- 20us/64ch to read out

LaBr₃ Array 64 ch reading

Energy resolution, Power Consumption

summary

- Assembly of an 8 × 8 LaBr₃ pixel array for improvement an angular resolution of Compton Camera.
 - Pixel size : 5.8 \times 5.8 \times (15 or 20) mm³
 - Pixel pitch: 6.1mm (the same as that of MAPMT H8500)
- Energy resolution of the array with MAPMT (FWHM, @662keV) – LaBr₃ array 5.8 \pm 0.9 % – GSO array 10.8 \pm 1.0%
- Angular resolution of Compton gamma camera (FWHM)

 With LaBr₃ array
 4.2±0.3 deg. @ 662 keV
 3.5 deg. @ 1.3 MeV (expected) (COMPTEL 4.7 deg. @ 1.3 MeV)
- Individual readout system for each anode channel.

for your attention

Special thanks to Dr. Y. Yanagida Mr. T. Kadono

The Last Shogun: Yoshinobu Tokugawa http://www.kanko-chiyoda.jp/tabid/841/Default.aspx