In-beam isomer spectroscopy with LaBr₃ crystal

-With an isomer state in ${}^{15}\mbox{C}$ -

Jongwon Hwang (Seoul National University)

Contents 💙 Intro

Problem

tion 🔪

Contents

In-beam isomer spectroscopy

- In-beam γ -ray spectroscopy
- Problem : Doppler broadening
- Solution : Guessing a decay point
- Simulation : Using GDALI
- Result

Introduction

> Proble

S S

In-beam γ -ray spectroscopy

RIPS : Experimental Setup

EXOGAM at GANIL

J.Hwang, Seoul National University

Problem : Doppler broadening

Problem

J.Hwang, Seoul National University

Summary

Solution : Guessing a decay point

Solution

- Using timing difference between reaction and γ -ray detection
 - Assumptions : I. Reaction occurs at the center of the target.
 2. Fragments move along the z-axis (beam center).

• GDALI : GEANT code for DALI

Source

• γ -ray from (740, 5/2⁺) in ¹⁵C with T_{1/2}=2.61ns

Position of reaction and velocity of ¹⁵C

- Randomly chosen among the experimental result (eta pprox 0.4)

Two cases : time resolution

- Nal(TI) :~ 2.5ns
- LaBr₃:Ce :~ 0.2ns

Simulation

Result

$\mathsf{Result}: \Delta t \to \mathsf{Z}_{\mathsf{d}}$

J.Hwang, Seoul National University

Result : Doppler correction

J.Hwang, Seoul National University

Summar

Result

Result : Accuracy of correction

Event rate (%)

Result

Summary

- In-beam isomer spectroscopy
 - Doppler broadening : (Isomer) » (General)
 - Due to the unknown distributed decay point
 - Guessing it by using the timing difference
 - Simulation for different time resolutions
 - Higher time resolution
 - \rightarrow Guessing the decay point **more precisely**
 - \rightarrow Compensating Doppler broadening **better**
 - LaBr3 is cut out for 'in-beam isomer spectroscopy'.

Summar

Thank you.

J.Hwang, Seoul National University