

Characterisation of LaBr₃(Ce) Performance for PARIS

O. J. Roberts

RIKEN SHOGUN Workshop Tokyo 4-5 February 2011

<u>Outline</u>

- Motivation
- SiPM Array
 - Light Response
 - Timing Measurements
 - Temperature Response
- Phoswich Detector
 - Neutron Response
 - Coincidence Timing Measurements
 - Pile Up Measurements
 - ²⁷Al(p,γ)²⁸Si Beam Test
- Summary & Conclusions

Images courtesy of J.Strachan (STFC)

Motivation: PARIS

- Energy range between
 0.1 and 50 MeV
- Two layers of scintillators in a 4π arrangement: LaBr₃(Ce) and BaF₂, or CsI(Na)
- An outstanding question within the collaboration is what set-up to adopt.

Large Area APD's

- Novel SiPMs from SensL provide high gain and low dead space
- Built-in preamp takes in 5 V and creates a bias voltage of ~28 V.
- Sensitive from 400-850 nm, peaking at ~ 520 nm.
- 16 pixels, 3.2 x 3.2 mm.
- Collectively, large amount of noise (50-100 mV), small S/N.

SensL Spectra & Pulse

"New" SiPM Array

- A new SensL arrays with FPC cables were purchased.
- 4 boards were made at the University of York to read off the signal.
- Switches allowed greater flexibility

Energy Spectra with New Arrays

- 1"x1"x6" CsI(TI) scintillator coupled to the detector produced spectra
- FWHM resolution with a ¹³⁷Cs source, found to be ~19%
- Similar resolution when measuring the FWHM of the 511 keV photopeak (~25%)

Timing with the SiPM

 Start-stop timing coincidence measurement with 1" BaF₂ detector revealed a timing FWHM of ~ 120 ns

Temperature Response of LAAPD

Labyrinth in the copper plate is pumped with cooled alcohol

Temperature tests between 2°C and 30°C shows linear degradation in the FWHM of green LED (565 nm) Signal.

Temperature Response of LAAPD

Temperature and energy resolution is linear.
Resolution with scintillator still not optimised.

SiPM Conclusions

- SiPM Array
 - Light Response Very good with a green LED. Newer models give a spectrum of poor energy resolution when used with a 6" CsI(TI) scintillator.
 - Timing Measurements Timing resolution with respect to a 1" BaF₂ in a start-stop set-up was poor when used with a CsI(TI) crystal (~120 ns)
 - Temperature Response Energy resolution responded linearly with temperature. Lower energy resolutions recorded at lower temperatures.
 - Tests reveal several shortcomings that might be improved with an alternative method.

 \mathbf{x}

Phoswich Tests

The signal is read out on one device (i.e. PMT).

Neutron Response

- Neutron response of the phoswich detector was observed with a 10.5 GBq ²⁴¹Am/⁹Be source.
- Large thermal n-capture cross-section from ¹³⁹La, ⁷⁹Br, ⁸¹Br.
- Is PSD between gammas and neutrons possible?

Neutron Activated Spectrum

In-beam spectrum showing the lower energy regions up to 1MeV in the inset.

Pulse Shape Analysis for LaBr₃(Ce)

PERFERENCE PERFERENC

Timing Coincidence Measurements

- Set-up involved irradiating a 1 inch Bicron BaF₂ scintillator formed the "start" channel.
- Front-end timing resolution of 696 ± 13 ps, and Csl(Na) has a timing resolution of 24 ± 1 ns.

Electronics Timing Resolutions

 Timing Resolutions of the electronics are shown opposite.

~125 ps and 1.44 ns for the LaBr₃(Ce) and CsI(Na) segments respectively.

Improving the Timing Measurements

PHOTON ARRAY FOR STUDIES WITH RADIOACTIVE ON AND STABLE BEAMS

- Optimisation of the timing loop resulted in a marginal improvement to 665 ± 2 ps. Therefore, the timing is constrained by the fast component of BaF₂ (~600 ps).
- Need to test with another detector with a comparable time match eg. LaBr₃(Ce).

Segment	Int. Timing Res.	Timing(ps)/ch	Intrinsic Timing Res.	Delay (ns)	TAC Range (ns)
LaBr ₃ :Ce	696 ± 13	45.0 ± 0.1	685 ± 13	100	400
Front Elec.	125 ± 1	45.0 ± 0.1	125 ± 1	100	400
CsI:Na	23851 ± 434	167 ± 4	23810 ± 426	400	2000
Back Elec.	1436 ± 110	167 ± 4	1436 ± 110	400	2000

Pile-Up Measurements

- HV plateau had to be determined by altering the CFD LLD and TFA settings.
- Two ⁵⁷Co sources of different strengths were used; one hot source (4.2 mCi) and one weaker source (3.9 µCi).
- Results were generated based on ratios between "Measured" and "True" counts.

Pile-Up Measurements

Rate found to be ~ 800 kHz, primarily from $LaBr_3$ (Ce)

University of Brighton

×

- Proton beam incident on 100µgcm⁻² ²⁷Al target.
- Purpose to look at resonant capture and observe performance of phoswich under laboratory conditions.

Several QDC modules used with the phoswich

*

Calibration Tests

Calibrations with lab sources were used to determine the appropriate gates used with the QDCs to maintain linearity.

Yields and Resonance Strengths

$E_{\rm R}$	Y_{∞}	$\omega\gamma$
(keV)	$(Counts/\mu C)$	(eV)
202.8	0.094(13)	$1.10(15) \times 10^{-5}$
222.7	0.40(3)	$5.0(4) \times 10^{-5}$
292.6	1.9(1)	$2.80(15) \times 10^{-4}$
326.6	13.3(7)	$2.10(11) imes 10^{-3}$
405.3	58(3)	$1.04(5) \times 10^{-2}$
446.7	9.4(7)	$1.80(15) \times 10^{-3}$
504.9	151(19)	$3.1(4) \times 10^{-2}$
506.4	204(24)	$4.1(5) \times 10^{-2}$
611.5	26(3)	$5.8(7) imes 10^{-3}$
632.2	1296(130)	0.29(3)
654.7	538(53)	0.12(1)
679.3	249(26)	$5.8(6) imes 10^{-2}$
731.4	591(34)	0.142(8)
736.5	726(52)	0.175(15)
743.0	94(10)	$2.30(25) \times 10^{-2}$
760.4	556(39)	0.14(1)
767.2	802(57)	0.200(15)
773.6	1696(170)	0.42(4)
887.8	44(5)	$1.20(15) imes 10^{-2}$
923.0	551(55)	0.145(15)
937.3	721(72)	0.19(2)
991.9	7308(517)	2.00(15)
1025.3	1318(132)	0.36(4)
1089.7	303(22)	$8.4(6) \times 10^{-2}$
1097.3	150(16)	$4.2(4) \times 10^{-2}$
1118.6	2978(298)	0.85(9)

<u>ecccepeccepecc</u>

Eur. Phys. J. A 9, 479-489 (2000)

 Resonance Strengths and yields at resonance energies.

Energy Loss: 20.35 keV A 9, 479-489 (2000)

Yield Curves: 10µgcm⁻² (♥) 50µgcm⁻²(●)

University of Brighton

<u>Summary</u>

- SiPMs were very noisy, but eventually generated a spectrum. Although, a poor timing resolution of ~120 ns for a 6" CsI(TI) scintillator was recorded, they displayed a very linear trend in energy resolution with respect to temperature.
- Neutron activation observed due to isotopes with large thermal neutron cross-sections in Lanthanum and Bromine.
- (n,γ) pulse shape discrimination not possible.
- Phoswich timing resolutions of ~0.7 and 24 ns for LaBr₃(Ce) and CsI(Na) with respect to the BaF₂ scintillator, were limited due to poorly time matched BaF₂ in start channel.
- Pile-up rate found to be ~ 800 kHz, primarily from $LaBr_3(Ce)$.
- LaBr₃(Ce)/CsI(Na) Phoswich produced poor spectra in-beam, where gain matching the CsI(Na) scintillator proved to be extremely difficult.

Acknowledgement of Collaborators

P. Joshi¹, D. Jenkins¹, O. Dorvaux², M. Rousseau², Christian Finck^{2,}, M.Ciemala³, D. Lehertz⁵, A. Maj³, I. Matea⁴, J. Pouthas⁴, J. Strachan⁶, A. Smith⁷, R.Wadsworth¹, and the rest of the PARIS collaborators

¹University of York, United Kingdom ²IPHC Strasbourg, France ³IFJ PAN Krakow ⁴IPN Orsay, France ⁵GANIL, Caen, Frace ⁶STFC Daresbury, United Kingdom ⁷University of Manchester, United Kingdom

Background Spectrum

- Lower channels cut due to K-Shell X-Rays Intensity.
- FWHM @ 1436keV is 169.10keV, Resolution 4.77%

Alpha Contamination

 ²²⁷Ac (t_{1/2}=21.2yrs), in the same group (IIIB) as Lanthanum

Alpha Scintillation Properties

Comparison of Alpha Energies in LaBr3:Ce

- Ratio between the two is 0.35.
- Alphas emit 65% less light.
- In agreement with LaCl₃ measurements by Hartwell and Gehrke*

Source Position Sensitivity

• What happens when we place it in the centre of the two detectors? See 4 Peaks for ⁶⁰Co!

University of Brighton

×

Timing Coincidence Measurements

19999999999999999

- Set-up involved irradiating a 1" Bicron BaF₂ scintillator formed the "start" channel.
- Both channels were triggered by the coincidence unit externally.
- Timing measurements were taken from the CsI(Na) and LaBr₃(Ce) segments.

²⁷Al(p,γ)²⁸Si Reaction

- Population of 742, 760.4,767, and 773.6 keV resonances observed due to $\Delta E << \Gamma$.
- Resonance strength ωγ, is high for 760.4-773.6, with 773.6 the strongest.
- FWHM resolution of 2⁺-0⁺ with 2"x2"x4" LaBr₃(Ce) crystal = 2.47%
- 10.54 MeV transition with the same detector produced a FWHM of 1.43%

SPIRAL2

Courtesy of http://irfu.cea.fr

*

Physics Case	Recoil	v/c	E _y range	$\Delta E_{\gamma} / E_{\gamma}$	$\Delta \Sigma_{\gamma} sum / \Sigma_{\gamma} sum$	۵My	Ω	∆T _{of}	Ancillaries	Miscellamesous
		(cmns ⁻¹)	(Ma)()	(%)	(%)	(units)	(sr)	(ns)		
			(Mev)				(finally)		(prototype scenario)	
Jacobi transition	A~	up to	[0 1-30]	6	45	۲ « ۲	2π - 4π	< 1	v-calorimeter*	High efficiency
	40-150	10%	[0.1 30]	,	,	, ,	2.4 1.4	••	AGATA ** HI spectro	Beam rejection ?
Shape Phase Diagram	A~	up to	[0.1-30]	6	~ 3	5	2π - 4π	. 1	a calorimeter	High officiancy.
å	180	11%	[0.1-30]	0		、		` 1	γ-calorimeter HI spectro	Beam rejection ?
rich nuclei					< 5		>10% /4π			
Isospin mixing	A~	up to	[5 20]	6			un to Arr	. 1		High officiancy.
	60-100	7%	[5-30]	0	-	-	up 10 4%	×1	γ-calorimeter HI spectro	Beam rejection ?
Reaction dynamics	A~	up to	[0.1-25]	6-8	< 8	~ 4	up to 2π	< 1	y-calorimeter	Complex coupling
	160-220	7%							n detector	1 1 2
									FF detector	
Collectivity vs. multifragmenta	A~	up to	[5-25]	5	-	-	un to 2π	< 1	v calorimeter	Complex coupling
tion	120-200	8%	[0-20]	5	_		α ρ το 2.λ		LCP detector	complex coupling

Courtesy of Ch. Schmitt (GANIL), May 2008

Physics Case	Recoil	v/c	E _γ range (MeV)	∆E _γ / E _γ (%)	$\Delta \Sigma_{\gamma}^{sum} / \Sigma_{\gamma}^{sum}$ (%)	∆M _y (units)	Ω coverage (sr) (finally)	∆T _{of} (n=)	Ancillaries (prototype scenario)	Miscellamesous
Radiative Capture	A~ 20-30	up to 3%	[1-30]	< ~4	< 5	rough	~ 4π	< 1	HI spectro	High efficiency High current ?
Multiple (normal) Coulex	A~ 40	up to 7%	[2-6]	~ 5	-	-	up to 2π	< 1	AGATA CD detectors	Complex coupling
Astrophysics	A~ 16-90	< 0.2%	[0.1-6]	-	< 5	rough	~ 4π	< 1	γ-calorimeter	High efficiency Background
Shell structure at ntermediate energies	A~ 16-40	up to 40%	[0.5-4]	~ 3	-	-	up to 4π	« 1	γ-calorimeter HI analyzer	High efficiency - very low I _{beam} - γ-γcoincidence
Relativistic Coulex	A~ 40	up to 50-60%	[1-4]	~4	-	ideally, M _y = 1	forward with ~π/3 aperture	« 1	AGATA HI analyzer	Angular distribution Lorentz boost

Courtesy of Ch. Schmitt (GANIL), May 2008

