NaI(Tl) array for in-beam γ -ray spectroscopy

- Introduction
 - •DALI & DALI2
 - •In-beam γ-ray spectroscopy
- Developments
 - Requirements
 - Solutions
 - •DALI2
- Experiments
 - •DALI
 - •DALI2

TAKEUCHI Satoshi

RIKEN Nishina Center

DALI & DALI2

Detector Array for Low Intensity radiation

 \rightarrow For use in experiments with in-beam γ -ray spectroscopy technique.

• DALI (1994 -) by Rikkyo University

Collaborators: T.Motobayashi, Y.Yanagisawa, ... (ST),...

Publication: 21 papers

• DALI2 (2002 -) by Rikkyo University and RIKEN

Collaborators : ST, T.Motobayashi, N.Aoi, H.Murakami, Y.Togano, M.Matsushita, ..., and in-beam γ-ray spectroscopy group in RIKEN.

Publicatino: 24 papers

RI Beam Factory

Experiments by means of in-beam γ -ray spectroscopy.

Performed at RIPS, BigRIPS/ZDS, and SHARAQ

Unstable nuclei

- Decays to stable nuclei by β decay with a certain lifetime.
- Provided as fast secondary beams.
- Low beam intensity
- -Low event rate (γ ray emission)
- –Doppler shift [β = v/c ~ 0.3 (RARF) and β ~ 0.6 (RIBF)] →γ ray energy depends on the emission angle.'

Typical beam intensity

$$\beta \sim 0.3$$

30
Ne~ 30 O cps, 42 Si ~10 cps β ~ 0.6

In-beam γ -ray spectroscopy

One of useful methods for study of stable or unstable nuclei by measuring de-excitation γ rays and scattered particles.

- γ ray energy γ ray yield γ ray distribution
- → Excitation energy
- → Transition strength
- → Angular momentum
- → Nuclear structure or shape

Experiment at RIPS with DALI

DALI: Detector Array for Low Intensity radiation

Fig. 1. Energy spectrum of γ rays emitted from the $^{32}\text{Mg}+^{208}\text{Pb}$ inelastic scattering at 49.2 MeV/u incident energy. The Doppler shift is corrected for.

T. Motobayashi et al. /Physics Letters B 346 (1995) 9-14

60 NaI(Tl) detectors

Experiment at RIPS with DALI

DALI: Detector Array for Low Intensity radiation

typical spec. of DALI-1

up to 68 NaI(Tl) detectors

angular resolution : ~15 degree

efficiency: about 15% for 1MeV

γ rays which we measure.

• Energy range

100 keV - 5000 keV in moving frame

50 keV - 10000 keV in lab. Frame

• Low intensity (low event rate)

→ High detection efficiency

Doppler shifted

Corrections of Doppler shift effects

γ rays which we measure.

• Energy range

100 keV - 5000 keV in moving frame 50 keV - 10000 keV in lab. Frame

• Low intensity (low event rate)

→ High detection efficiency

Doppler shifted

→ Angular resolution

• Emission angle

Forward peak (Lorentz boost)

→ Detector arrangement

Background

→ Timing resolution (to eliminate by time info.)

Angular distribution of γ rays

Black : $\Delta L = 0$

Red : $\Delta L = 1$

Blue : $\Delta L = 2$

Efficiency depends on angular coverage and angular distribution of γ rays.

The policy of the design

 γ ray energy
γ ray yield
→ Excitation energy
→ Transition strength γ ray distribution \rightarrow

Angular momentum

← intrinsic resolution & granularity

← large volume

← granularity

High detection efficiency and high angular resolution array

(高効率) Efficiency Granularity (細分化) (融通がきく) Flexibility

~ 200 NaI(Tl) detectors

DALI2 (Detector array for Low Intensity radiation 2)

Collaboration: RIKEN Nishina Center & Rikkyo University

Specification

Rikkyo

• SAINT-GOBAIN x 80 detectors

45 x 80 x 160 (mm)

About 8%@662keV (137Cs)

RIKEN

• SCIONIX x 80 detectors

 $40 \times 80 \times 160 \text{ (mm)}$

About 9%@662keV(137Cs)

+ BICRON detectors (from DALI)

PMT: HAMAMATSU R580

- DALI2 – for RIBF exp.

DALI2 specification

Arrangement	Hedgehog like		
Size (cm ³)	4.5 x 8 x 16		
# of Detectors	160		
Volume	~ 90 liter		
# of Layers	16		
Angular resolution	~ 8 degree		
Energy resolution (β~0.6)	10% @ 1MeV		
Efficiency (β~0.6)	20% @1MeV (24%@1MeV (β~0.3))		
Timing resolution	~ 2.5ns (FWHM)		

γ-ray energyEmission angle of γ ray→ For Doppler-shift corrections

Ref. S.Takeuchi et al., RIKEN Accel. Prog. Rep. 36(2003)148

Past experiments with DALI (2005-1994)

^{18,19} C knockout reaction	TITech, RIKEN	RIPS
²⁰ Mg Coulex	Tohoku, Rikkyo, RIKEN	RIPS
²⁸ Ne Coulex	CNS, RIKEN	RIPS
^{15,17} B(C,C')	TiTech	RIPS
¹² Be 0 ⁺ state	CNS, Rikkyo, RIKEN	RIPS
³⁰ Ne(p,p')	RIKEN, Rikkyo	RIPS
$^{14}O(\alpha,\alpha')$	CNS, Rikkyo	RIPS
12 Be(α,α')	CNS, Rikkyo	RIPS
¹⁶ C(Pb,Pb')	ATOMKI, Rikkyo	RIPS
³⁴ Si(d,d')	RIKEN, Rikkyo	RIPS
34Mg Coulex	Tokyo	RIPS
¹⁵ O Coulex	Rikkyo, RIKEN	RIPS
³⁴ Mg by fragmentation	Tokyo, Rikkyo	RIPS
¹² Be(p,p'), ¹² Be(Pb,Pb')	Tokyo, Rikkyo	RIPS
⁵⁶ Ni Coulex	Rikkyo, Tokyo	RIPS
⁸ B Breakup	Rikkyo, Tokyo	RIPS
¹¹ Be Breakup	Tokyo	RIPS
32Mg Coulex	Rikkyo	RIPS

Experiment at RIPS with DALI

DALI: Detector Array for Low Intensity radiation

Fig. 1. Energy spectrum of γ rays emitted from the $^{32}\text{Mg}+^{208}\text{Pb}$ inelastic scattering at 49.2 MeV/u incident energy. The Doppler shift is corrected for.

T. Motobayashi et al. /Physics Letters B 346 (1995) 9-14

60 NaI(Tl) detectors

³⁰Ne beam: 0.2 counts / second

→ Very weak intensity

Identify peak with or without conditions of particle identifications.

Past experiments with DALI2 (present-2002)

³² Mg Coulex and inelastic scattering for reaction study	RIKEN	BigRIPS
A=130 region Coulex and nucleon removals for reaction study	RIKEN	BigRIPS
³² Ne inelastic scattering	RIKEN	BigRIPS
²⁰ C(p,p'), ²⁰ C Coulex	ATOMKI, RIKEN	RIPS
³⁰ Ne(p,p'), ³⁸ Mg(p,p')	RIKEN	RIPS
³⁴ Si(p,p') ³⁴ Si [*]	RIKEN	RIPS
$^{32}Mg(p,p')^{32}Mg^{-}$	RIKEN	RIPS
^{60,62} Cr(p,p')	Rikkyo, RIKEN	RIPS
$^{22}O(d,p)^{23}O$	ATOMKI, RIKEN	RIPS
^{18,17,18} C(p,p')	Tokyo, RIKEN	RIPS
⁸ B breakup with H, He, Pb	RIKEN	RIPS
¹⁹ C(p,p') ¹⁹ C*	ATOMKI, RIKEN	RIPS
⁷⁸⁻⁸² Ge Coulex	Tokyo, RIKEN	RIPS
²⁸ Ne Coulex, Coulomb Breakup	Orsay, TITech, RIKEN	RIPS
⁴ He(²² O, ²³ F*)	CNS, RIKEN	RIPS
¹⁸ C(p,p') ¹⁸ C*	ATOMKI, Tokyo, RIKEN	RIPS
²⁷ F(p,p') ²⁷ F*	ATOMKI, Tokyo, RIKEN	RIPS
⁵⁴ Ni, ⁵⁰ Fe, ⁴⁶ Cr. Coulex	Rikkyo, RIKEN	RIPS
12 Be(α,α') 12 Be * , 12 Be(α,t) 13 B *	CNS, Rikkyo, RIKEN	RIPS

First experiment by using DALI2

²⁷F beam : 4 cps

³²Mg inelastic scattering (@RIPS) PHYSICAL REVIEW C **79**, 054319 (2009)

Angular distribution of γ rays

First experiment using DALI2 at RIBF

Eight hours measurements.

FIG. 2. Doppler corrected γ -ray energy spectra in coincidence (± 5 ns) with 32 Ne (a),(b) and 30 Ne (c),(d). Panel (a) shows the results for inelastic scattering of 32 Ne and (b) the result for proton removal from 33 Na. The outcomes of the fitting procedure are shown by the solid (total) and dashed (background) curves. Here, both spectra were fitted simultaneously with the same peak position and peak width, but different peak areas and background parameters. The inset panels (c) and (d) show the results for inelastic scattering of 30 Ne and for p2n removal from 33 Na, respectively, populating the first 2^+ state in 30 Ne.

Need more good resolution to separate γ lines

Next-generation array → SHOGUN

Efficiency (高効率) larger volume

high-z scintillator

Granularity (細分化) small size scintillator

enough length for γ rays

Flexibility (融通がきく) easy rearrangement

easy cabling

+ better intrinsic energy resolution

Efficiency ~ same as the present system or better

Energy resolution <3% @ ¹³⁷Cs energy

Angular resolution <3 degrees

Circuit FADC+FPGA?

γ ray tracking pulse shape analysis, if shape depends on depth.

LaBr₃(Ce) scintillator - BrilLanCe 380 by SAINT-GOBAIN

	Light output (%)	Decay time (ns)	Density (g/cm ³)	DE/E (%) @511keV
LaBr ₃ (Ce)	130	26	5.3	3
NaI(Tl)	100	250	3.7	7
LSO	50-75	41	7.4	12
GSO	20-30	30-60	6.7	9
BGO	20	300	7.1	14

LaBr₃(Ce): good solution, but very expensive.

25mm
$$\phi$$
 x 76mm → ~¥1,300,000 (without PMT) → ¥35,000 /cm³ (2008)

NaI(Tl)

 $40\text{mm} \times 80\text{mm} \times 160\text{mm} \rightarrow \text{~} \text{2} \text{2} \text{3} \text{3} \text{3}$

Summary / Memo

DALI2 was developed for experiments performed at RIBF, by using 160-186 NaI(Tl) detectors.

→ DALI2 is a powerful tool for in-beam γ -ray spectroscopy in the light-mass region, especially for study of the first 2⁺ state.

→ For the heavier mass region and more detailed studies, we have to develop a new device, SHOGUN.

When we can switch to SHOGUN?

How many people (or collaborations) do we need?

How much?

We continue to use DALI2 or other Ge arrays, until SHOGUN is available.

