3次元パートン分布(TMD,GPD) とQCDスピン物理

八田佳孝 BNL & 理研BNL

02/23/2021 日本のスピン物理学の展望

Future DIS experiments worldwide

Planned DIS Colliders around the world

1812.08110

<u> </u>					
Facility	Years	E_{cm}	Luminosity	Ions	Polarization
		(GeV)	$(10^{33} cm^{-2} s^{-1})$		
DIG LUG			(10 0.00 0)		1 311 1
EIC in US	> 2028	$20 - 100 \rightarrow 140$	2 - 30	$p \rightarrow 0$	e, p, d, ^o He, Li
EIC in China	> 2028	16 - 34	$1 \rightarrow 100$	$p \rightarrow Pb$	e, p, light nuclei
LHeC (HE-LHeC)	> 2030	200 - 1300 (1800)	10	depends on LHC	e possible
PEPIC	> 2025	$530 \rightarrow 1400$	$< 10^{-3}$	depends on LHC	e possible
VHEeP	> 2030	1000 - 9000	$10^{-5} - 10^{-4}$	depends on LHC	e possible
FCC-eh	> 2044	3500	15	depends on FCC-hh	e possible

Experiment at EIC: Deep Inelastic Scattering (DIS)

Proton, deuteron, helium, gold...any nucleus of your choice!

Electron, proton and light nuclei can be polarized.

arXiv:1212.1701

Nucleon Tomography

2	Spir	n and '	Three-Dimensional Structure of the Nucleon
	2.1	Introd	uction
	2.2	The L	ongitudinal Spin of the Nucleon
		2.2.1	Introduction
		2.2.2	Status and Near Term Prospects
		2.2.3	Open Questions and the Role of an EIC
	2.3	Confin	ed Motion of Partons in Nucleons: TMDs
		2.3.1	Introduction
		2.3.2	Opportunities for Measurements of TMDs at the EIC
			Semi-inclusive Deep Inelastic Scattering
			Access to the Gluon TMDs
		2.3.3	Summary
	2.4	Spatia	I Imaging of Quarks and Gluons
		2.4.1	Physics Motivations and Measurement Principle
		2.4.2	Processes and Observables
		2.4.3	Parton Imaging Now and in the Next Decade
		2.4.4	Accelerator and Detector Requirements
		2.4.5	Parton Imaging with the EIC
		2.4.6	Opportunities with Nuclei

 $\begin{array}{c} 40 \\ 41 \\ 43 \\ 43 \\ 45 \\ 48 \\ 50 \\ 51 \\ 55 \end{array}$

Electron Ion Collider: The Next QCD Frontier

Understanding the glue that binds us all

Exploring terra incognita

Parton distribution function

$$u(x) = \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle P|\bar{u}(-z^{-}/2)\gamma^{+}u(z^{-}/2)|P\rangle$$

Number distribution of up quarks with momentum fraction $\mathcal X$ inside the proton

QCD factorization $\sigma = \sigma_0 \otimes g(x_1) \otimes g(x_2)$

Universality of PDF—the same function can be used for different processes. Fundamental to the predictive power of pQCD

Polarized parton distributions

Nucleon spin sum rule

Gluons' helicity Momentum (OAM)

$$\Delta \Sigma = \sum_{q} \int_{0}^{1} dx (\Delta q(x) + \Delta \bar{q}(x))$$

Relatively well-constrained

 $\Delta G = \int_0^1 dx \Delta G(x)$

Huge uncertainty at small-x

$$L^{q,g} = \int_0^1 dx L^{q,g}(x) \quad {{
m twist-3 \ PDF} \over {
m YH, \ Yoshida \ (2013)}}$$

WW part related to $\Delta q(x), \Delta G(x)$

Helicity and OAM at small-x

Huge uncertainties in ΔG at small-x \rightarrow spin at small-x will be an important topic at EIC

Significant cancellation between helicity and OAM at small-x from 1-loop DGLAP YH, Yang (2018)

All-order result Boussarie, YH, Yuan (2019)

If
$$\Delta G(x) \sim \frac{1}{x^{\alpha}}$$
, then $L_g(x) \approx -\frac{2}{1+\alpha} \Delta G(x)$

Nucleon EDM and spin physics

CP-violating Weinberg operator \rightarrow important source of nucleon electric dipole moment (EDM)

$$\mathcal{O}_W = g f_{abc} \tilde{F}^a_{\mu\nu} F^{\mu\alpha}_b F^{\nu}_{c\alpha}.$$

Matrix element related to part of twist-4 corrections in polarized DIS YH (2020)

$$\frac{d}{d}$$

$$\int_{0}^{p,n} (x, Q^{2}) dx$$

$$= (\pm \frac{1}{12} g_{A} + \frac{1}{36} a_{8}) (1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})) + \frac{1}{9} \Delta \Sigma (1 - \frac{33 - 8N_{f}}{33 - 2N_{f}} \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2}))$$

$$- \frac{8}{9Q^{2}} \Big[\{\pm \frac{1}{12} f_{3} + \frac{1}{36} f_{8} \} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \right)^{-\frac{\gamma_{NS}^{0}}{2\beta_{0}}} + \oint_{0}^{0} \left(\frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})} \right)^{-\frac{1}{2\beta_{0}}(\gamma_{NS}^{0} + \frac{4}{3}N_{f})} \Big],$$

New connection between QCD spin and BSM physics

Multi-dimensional tomography

The nucleon is much more complicated! Partons also have transverse momentum \vec{k}_{\perp} and are spread in impact parameter space \vec{b}_{\perp}

u(x) $u(x, \vec{k}_{\perp})$ $u(x, \vec{b}_{\perp})$ $u(x, \vec{b}_{\perp}, \vec{k}_{\perp})$ Transverse momentum dependent distribution (TMD) 3D tomography

Generalized parton distribution (GPD) 3D tomography

 $u(x,ec{b}_{\perp},ec{k}_{\perp})$ Wigner distribution

5D tomography

PDF family tree

Wigner distribution—the `mother' distribution

Belitsky, Ji, Yuan (2003)

Semi-inclusive DIS

Tag one hadron species with fixed transverse momentum $P_{\!\perp}$

When P_{\perp} is small, TMD factorization

Collins, Soper, Sterman; Ji, Ma, Yuan,...

$$\frac{d\sigma}{dP_{\perp}} = H(\mu) \int d^2 q_{\perp} d^2 k_{\perp} f(x, k_{\perp}, \mu, \zeta) D(z, q_{\perp}, \mu, Q^2/\zeta) \delta^{(2)}(zk_{\perp} + q_{\perp} - P_{\perp}) + \cdots$$

$$\frac{\mathsf{TMD}\,\mathsf{PDF}}{\mathsf{TMD}\,\mathsf{FF}}$$

$$f(x,\vec{k}_{\perp}) = \int \frac{dz^- d^2 z_{\perp}}{16\pi^3} e^{ixP^+ z^- - i\vec{k}_{\perp} \cdot \vec{z}_{\perp}} \langle P|\bar{q}(-z/2)\gamma^+ Wq(z/2)|P\rangle$$

Open up a new class of observables where perturbative QCD is applicable!

TMD is becoming precision physics

Define Fourier transform

$$\int d^2k_{\perp}e^{ik_{\perp}r_{\perp}}f(k_{\perp}...) = f(r_{\perp}...)$$

RG equation

$$\frac{\partial}{\partial \ln \mu} f(x, r_{\perp}, \mu, \zeta) = \gamma_F(\alpha_s(\mu), \zeta/\mu^2) f(x, r_{\perp}, \mu, \zeta)$$

$$\gamma_F = -\frac{\gamma_K}{2} \ln \frac{\zeta}{\mu^2} + \gamma_F^0$$

Related to DGLAP splitting function

$$P(z) = \frac{\gamma_K}{2} \frac{z}{(1-z)_+} + \frac{\gamma_F^0}{2} \delta(1-z) + \mathcal{O}(1-z)$$
 Known to three loops

Collins-Soper equation

$$\frac{\partial}{\partial \ln \zeta} f(x, r_{\perp}, \mu, \zeta) = -\mathcal{D}(\mathbf{r}_{\perp}, \mu) f(x, r_{\perp}, \mu, \zeta)$$

Recently computed to three loops Li, Zhu (2017); Vladimirov (2017) Computable from lattice QCD at large r_{\perp} Ebert, Stewart, Zhao (2018)

TMD global analysis

	Framework	W+Y	HERMES	COMPASS	DY	Z production	N of points
KN 2006 hep-ph/0506225	LO-NLL	w	×	×	~	~	98
QZ 2001 hep-ph/0506225	NLO-NLL	W+Y	×	×	~	~	28 (?)
RESBOS resbos@msu	NLO-NNLL	W+Y	×	×	~	~	>100 (?)
Pavia 2013 arXiv:1309.3507	LO	W	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	LO	W	(separately)	✓ (separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO-NNLL	W	×	×	~	~	223
EIKV 2014 arXiv:1401.5078	LO-NLL	w	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLO-NLL	W+Y	×	~	~	~	200 (?)
Pavia 2017 arXiv:1703.10157	LO-NLL	W	~	~	~	~	8059
SV 2017 arXiv:1706.01473	NNLO-NNLL	W	×	×	~	~	309
BSV 2019 arXiv:1902.08474	NNLO-NNLL	W	×	×	~	~	457

Still in its infancy. Fully blossoms in the EIC era!

Uncertainties in W-boson mass partly coming from TMD

$$m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$$

 $= 80370 \pm 19$ MeV,

 $-6 \le M_{W^+} \le 9 \,\,\mathrm{MeV}$ $-4 \le M_{W^-} \le 7 \,\,\mathrm{MeV}$ Bacchetta, et al. (2018)

 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

10-6 10-5

10-4 10-3 10-

Sivers function

Spin-momentum correlation in a transversely polarized proton

$$f(x,k_{\perp}) = f_0(x,k_{\perp}) + (\vec{S}_{\perp} \times \vec{k}_{\perp}) \cdot \hat{p} f_{1T}^{\perp}(x,k_{\perp})$$

Classic example of TMD.

One of the origins of observed large single spin asymmetry (SSA)

EIC will pin down the origin(s) of SSA. Gluon Sivers can also be studied at EIC \rightarrow SSA of open charm, J/ψ , dijet,...

Zheng, Aschenauer, Lee, Xiao, Yin (2018)

Sivers function: a different look

$$f(x,k_{\perp}) = f_0(x,k_{\perp}) + (\vec{S}_{\perp} \times \vec{k}_{\perp}) \cdot \hat{p} f_{1T}^{\perp}(x,k_{\perp})$$

More properly, use the nucleon spinor

$$k^i_{\perp}\bar{u}(PS_{\perp})\sigma^{+i}u(PS_{\perp})f^{\perp}_{1T}(x,k_{\perp})$$

non-forward generalization (GTMD)

$$k^i_{\perp}\bar{u}(P'S')\sigma^{+i}u(PS)F_{12}(x,k_{\perp},\Delta_{\perp})$$

Reduces to Sivers in the forward limit

This spinor product is also nonvanishing if longitudinally polarized and if helicity flips $S^{\mu}=-S'^{\mu}$

$$\bar{u}(P, -S_L)\sigma^{+i}u(PS_L) = (\pm i, -1)$$

Exclusive π^0 production at EIC

Boussarie, YH, Szymanowski, Wallon (2020)

Cross section in the forward limit is dominated by gluon Sivers at small-x!

Odderon = gluon Sivers at small-x

Zhou 1308.5912

Odderon: Predicted in the 70s as a C-odd counterpart of Pomeron

Experimentally elusive for decades. Finally found at the LHC? (TOTEM collaboration)

Gluon Sivers=Odderon in pp at the LHC

Generalized parton distributions (GPD)

$$P^{+} \int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \langle P'S' | \bar{\psi}(0) \gamma^{\mu} \psi(y^{-}) | PS \rangle$$

= $H_{q}(x, \Delta) \bar{u}(P'S') \gamma^{\mu} u(PS) + E_{q}(x, \Delta) \bar{u}(P'S') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2m} u(PS)$

Non-forward $\Delta = P' - P\,$ generalization of PDF

Fourier transform
$$\Delta_{\perp} \rightarrow b_{\perp}$$

Distribution of partons in impact parameter space
First moment \rightarrow elemag form factors
 $\int dx H_q(x, \Delta) = F_1(\Delta^2)$

Deeply Virtual Compton Scattering (DVCS)

Experimentally probe GPDs. HERA, JLab, Compass, EIC,...

Extraction challenging due to multiple variables and complicated convolution

Compton form factor

$$\begin{split} i \int d^4 y e^{iqy} \langle P' | T\{J^{\mu}(y)J^{\nu}(0)\} | P \rangle \\ = -(g^{\mu+}g^{\nu-} + g^{\nu+}g^{\mu-} - g^{\mu\nu}) \int \frac{dx}{2} \left(\frac{1}{x+\xi-i\epsilon} + \frac{1}{x-\xi+i\epsilon}\right) H_q(x,\eta,\Delta) \bar{u}(P')\gamma^+ u(P) + \cdots \\ \xi = \frac{Q^2}{2P \cdot q} \end{split}$$

3-loop evolution of GPD (non-singlet)2-loop coefficient functions in DVCS

Braun, Manashov, Moch, Strohmaier (2017~)

Global analysis Moutarde, Sznajder, Wagner; Kumericki, ...

Connection to proton spin

Second moment of GPD = gravitational form factor

1

$$\int_{-1}^{1} dx x \int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \langle \bar{\psi}(0)\gamma^{+}\psi(y^{-})\rangle = \frac{1}{(P^{+})^{2}} \langle P'|T_{q}^{++}|P\rangle$$

$$\langle P'|T_{q,g}^{\mu\nu}|P\rangle = \bar{u}(P') \left[A_{q,g} \gamma^{(\mu} \bar{P}^{\nu)} + B_{q,g} \frac{\bar{P}^{(\mu} i \sigma^{\nu)\alpha} \Delta_{\alpha}}{2M} + D_{q,g} \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4M} + \bar{C}_{q,g} M g^{\mu\nu} \right] u(P)$$

Ji su

Im rule
$$\frac{1}{2} = \sum_{q} J_q + J_g$$

 $J^q = \frac{1}{2} \int dx x (H_q(x) + E_q(x))$
 $J^g = \frac{1}{4} \int dx (H_g(x) + E_q(x))$

D-term: the last global unknown

D(t = 0) is a conserved charge of the nucleon, just like mass and spin!

Related to the radial force (`pressure') distribution inside a nucleon Polyakov, Schweitzer,...

$$T^{ij}(r) = \left(\frac{r^i r^j}{r^2} - \frac{1}{3}\delta^{ij}\right)s(r) + \delta^{ij}p(r)$$

Burkert, Elouadrhiri, Girod (2018)

u,d-quark D-term from DVCS, related to the subtraction constant in the dispersion relation for the Compton form factor

$$\operatorname{Re}\mathcal{H}_{q}(\xi,t) = \frac{1}{\pi} \int_{-1}^{1} dx \operatorname{P}\frac{\operatorname{Im}\mathcal{H}_{q}(x,t)}{\xi-x} + 2 \int_{-1}^{1} dz \frac{D_{q}(z,t)}{1-z} \qquad \int_{-1}^{1} dz z D_{q}(z,t) = D_{q}(t)$$

Need a significant lever-arm in Q^2 to disentangle different moments \rightarrow EIC

Teryaev (2005)

Gluon D-term from near-threshold J/ψ -production

Low-energy, near-threshold quarkonium production sensitive to gluon gravitational from factors

$$W_{th} = M_p + M_{J/\psi} \approx 4.04 \text{GeV}$$

Ongoing experiment at JLab, future measurement at EIC, RHIC

YH, Yang (2018); Boussarie, YH (2020)

Sensitive also to the gluon condensate → Proton mass problem

Conclusion

 In 10-15 years from now, DIS experiments will be running in the US, China and maybe also in Europe.

• Spin/TMD/GPD main physics topics. Theory rapidly evolving.