

偏極標的を用いた三核子力の研究

~散乱実験に向けた偏極³He標的の開発~

東北大学大学院 理学研究科

渡邊 跡武

Collaborators

Tohoku University

<u>A. Watanabe</u>, S. Nakai, K. Sekiguchi, T. Akieda, D. Etoh, M. Inoue, Y. Inoue, K. Kawahara, H. Kon, K. Miki, T. Mukai, D. Sakai, S. Shibuya, Y. Shiokawa, T. Taguchi, H. Umetsu, Y. Utsuki, Y. Wada, M. Watanabe

CYRIC, Tohoku University M. Itoh

≻ National Institute of Radiological Science

T. Wakui

RCNP, Osaka University
 K. Hatanaka, H. Kanda, H. J. Ong, D. T. Tran

University of Miyazaki

Y. Maeda, K. Nonaka

≻ RAP, RIKEN

Y. Ikeda, Y. Otake, A. Taketani, Y. Wakabayashi

≻KEK

T. Ino

Kyushu University
 S. Goto, Y. Hirai, D. Inomoto,
 H. Kasahara, S. Mitsumoto,
 H. Oshiro, T. Wakasa

➢RIKEN Nishina center H. Sakai, T. Uesaka

2NF and 3NF

Theoretical Discription of Nucleon-Nucleon (NN) Force

1935 Meson exchange picture by H. Yukawa Proc. Phys. Math. Soc. Jpn 17, 48.
 1990's Realistic NN potentials (AV18, CD-Bonn, and Nijmegen I&II)
 → precisely reproduce 3000–4000 NN scattering data (χ²/datum~1).

Three-Nucleon Force (3NF)

First theoretical insight by Fujita & Miyazawa $\rightarrow 2\pi$ -exchange 3NF Prog. Theor. Phys. 17, 360 (1957).

- ✓ Main ingredient of 3NF models (TM'99, Urbana IX, ...).
- ✓ 3NFs play important roles to nuclear properties ($A \ge 3$).

	AV18	AV18+TM	Exp.	
³ H	7.628	8.478	8.482	
³ He	6.917	7.733	7.718	
⁴ He	24.25	28.84	28.30	

3N 4N B F [MeV]

 2π -exchange 3NF diagram

A. Nogga et al., PRC 65, 054003 (2002).

Few-Nucleon Scattering

A good probe to study the dynamical aspects of 3NFs.

✓ Momentum dependence✓ Spin & Iso-spin dependence

*** Theory : Faddeev (-Yakubovsky) eq.**, etc... Rigorous numerical calc. for 3, 4*N* system

w/ 2NF, 3NF inputs

Exp. : Precise Data

Cross section, Spin observables (A_i, C_{ij}, K_{ij})

<u>d + p Elastic Scattering at 70–300 MeV/u</u>

- > Differential Cross Section $d\sigma/d\Omega$
 - 3NFs are clearly needed.
- > Spin Observables $(iT_{11}, T_{20}, T_{21}, T_{22}, K_{ij}^{l'})$
 - The data are partially reproduced by including 3NFs.
 - Spin dependent parts of 3NFs are less known.

K. Sekiguchi et al., PRC 65, 034003 (2002).

3NF Study via p-³He Scattering

The measurement of $p + {}^{3}\text{He}$ system $(E_p \ge 65 \text{ MeV})$

- ♦ First Step from Few to Many
 - ✓ Verifying 3NFs determined from *Nd* scattering system.
- Approach to isospin T = 3/2 of 3NFs
- ▲ Theory in progress...

- Cross section,
- Analyzing powers,
- Spin correlation coefficients.

Why do we need a polarized ³He target?

Polarized ³He Target ~for measurements of spin-observables~

Polarization Method

Spin-Exchange Optical Pumping (SEOP)

- ➢ Optical pumping by diode-laser → Rb polarization
- > Polarization transfer (Spin-exchange) : Rb atoms \rightarrow ³He nuclei
- ➢ Mixture of Rb & K → high-polarization efficiency ("Alkali-Hybrid")

150 mm

Target glass cell

Target part

Pumping part

Polarized ³He Target System

³He Polarimetry

AFP-NMR

- Reverse polarization direction.
- Measurement of relative ³He polarization.
- Monitoring ³He polarization during the scattering experiment.

EPR of alkali-metals

- Measurement of absolute
 ³He polarization^{*1}.
- Calibration of AFP-NMR.

*1 The value of 3 He number density is needed.

Neutron transmission

- Measurement of **absolute** ³He polarization.
- Calibration of AFP-NMR.
- *Cross-check* for EPR.

³He Polarimetry

AFP-NMR

- Reverse polarization direction.
- Measurement of relative ³He polarization.
- Monitoring ³He polarization during the scattering experiment.

EPR of alkali-metals

- Measurement of absolute
 ³He polarization^{*1}.
- Calibration of AFP-NMR.

*1 The value of ³He number density is needed.

Neutron transmission

- Measurement of **absolute** ³He polarization.
- Calibration of AFP-NMR.
- *Cross-check* for EPR.

AFP-NMR (Adiabatic Fast Passage-NMR)

- \blacktriangleright RF + sweeping a static magnetic field
 - → Flipping the ³He nuclear spin <u>without</u> polarization loss.
- Detecting NMR signals by pick-up coils.

³He Polarimetry : **EPR**

Electron Paramagnetic Resonance

- \succ Rb, K @static magnetic field \rightarrow Zeeman splitting
- \succ EPR freq. shift of alkali metals is proportional to the ³He polarization.

$$\Delta\nu(m_F = \pm F) = \frac{2\mu_0}{3} \frac{\mu_{\rm B}g_e}{h(2I+1)} \left(1 \mp \frac{8I}{(2I+1)^2} \frac{\mu_{\rm B}g_e B_0}{hA_{\rm hfs}}\right) \kappa_0 \mu_{\rm K} [{}^3{\rm He}] P_{{}^3{\rm He}}$$

M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998).

> Absolute ³He polarization can be obtained with an uncertainty of $\sim 5\%$.

13

Estimation of Target Polarization

- \blacktriangleright EPR method gives us only the ³He polarization in a pumping chamber.
- For scattering experiments, we need to know the ³He polarization in a target chamber.
- ≻ However, ...
 - Gas temperature inside the cell is uncertain (oven + pumping laser).
 - Polarization gradient between two-chambers.

Direct Measurement via Neutron Transmission

- Utilizes the fact that neutron transmission for ³He depends on the ³He polarization.
- The measurement was performed at RANS, RIKEN.

Pumping laser (795 nm, max. 80 W)

³He Polarimetry : Neutron Transmission @RANS, RIKEN

- > Neutron transmission T_n depends on the ³He number density and the ³He polarization P_{He} .
- The ³He polarization can be directly obtained from the ratio of T_n and $T_{n,0}$.

 $P_{\text{He}} = -\frac{1}{\ln(T_{n,0})} \cosh^{-1}\left(\frac{T_n}{T_{n,0}}\right) \quad \begin{array}{l} T_n : \text{neutron transmission} \\ T_{n,0} : \text{neutron transmission} @P_{\text{He}} = 0 \end{array} \quad \begin{array}{l} \text{Deam pulse} \\ \text{repetition} \\ \text{Pulse width} \\ 20 \ \mu\text{sec} \end{array}$

Exp. conditions

Energy

Current

Beam pulse

7 MeV (proton)

 $20 \,\mu A \,(\text{proton})$

max. 5 MeV (neutron)

RANS (RIKEN Accelerator-driven compact Neutron Source)

Ref. Y. Ikeda et al., NIMA 833, 61 (2016).

³He Polarimetry : Neutron Transmission @RANS, RIKEN

Experimental Results

$$P_{\rm He} = -\frac{1}{\ln(T_{n,0})} \cosh^{-1} \left(\frac{T_n}{T_{n,0}}\right) \quad \begin{array}{l} T_n : \text{neutron transmission} \\ T_{n,0} : \text{neutron transmission} @P_{\rm He} = 0 \end{array}$$

agree well with the result of EPR!

17

Measurements of *p*-³He Scattering ~with the polarized ³He target~

CYRIC @Tohoku Univ.

Beam	Proton	
Target	3 He gas (~2 mg/cm ²)	
Energy	70 MeV	50 MeV
Beam intensity	5–10 nA	3 nA
Target polarization	40% (max.)	50%
Measured angle (θ_{cm})	46° -141°	47° -120°
Solid angle	0.1–0.4 msr	0.1, 0.4 msr

RCNP @Osaka Univ.

Beam	Proton	
Target	³ He gas ($\sim 2 \text{ mg/cm}^2$)	
Energy	65 MeV	100 MeV
Beam intensity	10 nA	30 nA
Target polarization	40%	40%
Measured angle (θ_{cm})	47, 89, 133°	$47^{\circ} -149^{\circ}$
Solid angle	0.1–0.4 msr	0.1–0.4 msr

Experimental Setup

- An experimental setup around the target was same at CYRIC and RCNP.
- ➤ ΔE-E detectors were placed at the left and right sides of the target.
 - ΔE det. : plastic scinti., $0.2 2.0 \text{ mm}^{t}$
 - $E \det$: NaI(Tl) scinti., 50 mm^t
- > ³He spin direction was reversed by AFP-NMR every 1 hour.

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{0} (1 + p_{y}A_{y})$$

$$\boxed{\text{Left}} \qquad \boxed{\text{Right}}$$

$$A_{0y} = \frac{1}{p_{y}} \frac{n_{\text{L}}^{\uparrow} - n_{\text{L}}^{\downarrow}}{n_{\text{L}}^{\uparrow} + n_{\text{L}}^{\downarrow}} = \frac{1}{p_{y}} \frac{n_{\text{R}}^{\downarrow} - n_{\text{R}}^{\uparrow}}{n_{\text{R}}^{\uparrow} + n_{\text{R}}^{\downarrow}} \quad \text{or}$$

- p_y : Target polarization
- A_{0y} : ³He analyzing power
- $n^{\uparrow,\downarrow}$: Normalized yield at spin up (\uparrow)/down (\downarrow)

Cross asymmetry

 $R \equiv$

 $Y^{\uparrow,\downarrow}$: Events at spin up (\uparrow)/down (\downarrow)

Experimental Results of A_{0y}

*Calculations : A. Deltuva, private communications

23

Summary and Outlook

Studying 3NFs via *p*-³He scattering system at intermediate energies ($E/A \ge 65$ MeV).

• Approach to the T = 3/2 component of 3NFs.

The polarized ³He target has been developed for the scattering experiments.

Section Polarimetry : AFP-NMR, EPR, and neutron transmission using a neutron source at RIKEN.

• Typical ³He polarization : $\sim 50\%$ with uncertainties of 2-6%

We obtained ³He analyzing powers (50–100 MeV) and compared to the theoretical calculations.

• We confirmed <u>large discrepancies at around minimum and maximum angles.</u>

**** The discrepancies are clearly arising from the intermediate energy.

Thank you for your attention.