日本のスピン物理学の展望 CERN COMPASS の偏極標的 糠塚元気(・) 理研 BNL 研究センター, の山形大学)

· COMPASS 国際共同研究

- セットアップ
- データ収集ラン

· COMPASS 偏極標的

- 偏極、動的核偏極法
- 標的物質
- ³He/⁴He 希釈冷凍
- COMPASS PT マグネット
- マイクロ波
- 偏極度測定システム
- 測定結果
- ・まとめ

- ・核子構造とハドロンスペクトロスコピーの実験
- ・CERN の SPS から供給されるビームと固定標的を用いる
- ・日本グループは偏極標的と物理解析で貢献してきた。

COMPASS 国際共同実験

- **COmmon Muon and Proton Apparatus** for **S**tructure and **S**pectroscopy
 - ・12 カ国 200 人以上のスタッフと学生からなる研究グループ
 - ・2002 年からデータ収集開始

CERN COMPASSの偏極標的、糠塚元気(理研BNLセ・山形理)

COMP A.

スペクトロメータ: · 350 以上の ビーム: 160~190 GeV/c ~10⁸ particle/s 縦偏極 μ、ハドロン

- トラッキング面
- ・180 mrad 以内をカバー ・μ wall
- ECAL & HCAL
- RICH

02-04 SIDIS μ±, 160 %LiD, 縦・横偏極 06 SIDIS μ+, 160 %LiD, 縦偏極 07 SIDIS μ+, 160 NH3, 縦・横偏極 08-09 ハドロンスペクトロスンビー 10 SIDIS μ+, 160 NH3, 横偏極 11 SIDIS μ+, 200 NH3, 縦偏極 12 DVCS 試験ラン μ±, 160 Liquid H2 14 DY 試験ラン n, 190 NH3, 横偏極 15 DY n, 190 NH3, 横偏極 16-17 GPD μ±, 160 Liquid H2 18 DY n, 190 NH3, 横偏極 19-20 H±, 160 Liquid H2 164	年	プログラム	ビーム (GeV/c)	ターゲット
06 SIDIS μ+, 160 6LiD, 縦偏極 07 SIDIS μ+, 160 NH3, 縦偏極 08-09 ハドロンスペクトロスンピー 10 SIDIS μ+, 160 NH3, 横偏極 11 SIDIS μ+, 200 NH3, 縦偏極 12 DVCS 試験ラン μ+, 160 Liquid H2 14 DY 試験ラン nr, 190 NH3, 横偏極 15 DY nr, 190 NH3, 横偏極 16-17 GPD μ+, 160 Liquid H2 18 DY nr, 190 NH3, 横偏極 19-20 GPD μ+, 160 Liquid H2	02 - 04	SIDIS	μ±, 160	⁶ LiD, 縦・横偏極
07SIDISµ+, 160NH3, 縦・横偏極08-09ハドロンスペクトロンブレ10SIDISµ+, 160NH3, 横偏極11SIDISµ+, 200NH3, 縦偏極12DVCS 試験ランµ±, 160Liquid H214DY 試験ランn⊤, 190NH3, 横偏極15DYn⊤, 190Liquid H216-17GPDµ±, 160Liquid H218DYnŢ, 190NH3, 横偏極19-20EERN LORG ShutdovNH3, 横偏極	06	SIDIS	μ+, 1 60	⁶ LiD, 縦偏極
08 - 09 ハドロンスペクトロスピー 10 SIDIS μ+, 160 NH3, 横偏極 11 SIDIS μ+, 200 NH3, 縦偏極 12 DVCS 試験ラン μ+, 160 Liquid H2 14 DY 試験ラン n⁻, 190 NH3, 横偏極 15 DY n⁻, 190 NH3, 横偏極 16 - 17 GPD μ±, 160 Liquid H2 18 DY n⁻, 190 NH3, 横偏極 19-20 CERN Long Shutdowt 2 NH3, 横偏極	07	SIDIS	μ+, 1 60	NH ₃ , 縦・横偏極
10SIDISμ+, 160NH3, 横偏極11SIDISμ+, 200NH3, 縦偏極12DVCS 試験ランμ±, 160Liquid H214DY 試験ランπ⁻, 190NH3, 横偏極15DYπ⁻, 190NH3, 横偏極16-17GPDμ±, 160Liquid H218DYπ⁻, 190NH3, 横偏極19-20CERN Long Shutdow ZNH3	08 - 09	ハト	ドロンスペクトロス	コピー
11SIDISμ+, 200NH3, 縦偏極12DVCS 試験ランμ+, 160Liquid H214DY 試験ランπ-, 190NH3, 横偏極15DYπ-, 190NH3, 横偏極16-17GPDμ+, 160Liquid H218DYπ-, 190NH3, 横偏極19-20CERN Long Shutdow 2	10	SIDIS	µ+, 160	NH ₃ , 横偏極
12 DVCS 試験ラン μ±, 160 Liquid H2 14 DY 試験ラン π⁻, 190 NH3 15 DY π⁻, 190 NH3, 横偏極 16 - 17 GPD μ±, 160 Liquid H2 18 DY π⁻, 190 NH3, 横偏極 19-20 CERN LONG Shutdown 2	11	SIDIS	μ+, 200	NH ₃ , 縦偏極
14DY 試験ランπ, 190NH315DYπ, 190NH3, 横偏極16 - 17GPDμ±, 160Liquid H218DYπ, 190NH3, 横偏極19-20CERN Long Shutdow 2	12	DVCS 試験ラン	μ±, 160	Liquid H ₂
15DYπ-, 190NH3, 横偏極16 - 17GPDμ+, 160Liquid H218DYπ-, 190NH3, 横偏極19-20CERN Long Shutdow 2	14	DY 試験ラン	π ⁻ , 190	NH ₃
16 - 17GPDμ±, 160Liquid H218DYπ⁻, 190NH3, 横偏極19 - 20CERN Long Shutdown 2	15	DY	π⁻, 190	NH ₃ , 横偏極
18 DY π-, 190 NH ₃ , 横偏極 19-20 CERN Long Shutdown 2	16 - 17	GPD	μ±, 1 60	Liquid H ₂
19-20 CERN Long Shutdown 2	18	DY	π ⁻ , 190	NH ₃ , 横偏極
	19-20	C	ERN Long Shutdov	wn 2
21 SIDIS µ+, 160 ⁶ LiD, 横偏極 4	21	SIDIS	μ+, 1 60	⁶ LiD, 横偏極 ◆

· COMPASS 国際共同研究

- セットアップ
- データ収集ラン

· COMPASS 偏極標的

- 偏極、動的核偏極法
- 標的物質
- ³He/⁴He 希釈冷凍
- COMPASS PT マグネット
- マイクロ波
- 偏極度測定システム
- 測定結果
- ・まとめ

CERN COMPASS の偏極標的、糠塚元気(理研BNLセ・山形理)

陽子に移す

陽子・電子の対は磁場中で4つの エネルギー準位をとる

DNP 法による陽子の負偏極の模式図

陽子・電子の対は磁場中で 4 つの エネルギー準位をとる

陽子負偏極を得るには

- 準位差 A-D のエネルギーを持つマイクロ波を 照射し、D→A の遷移を起こす
- A→C→D の順に緩和
- 3. A→C は 1 s オーダー,

C→D は1 ms オーダーで緩和するため, 状態 C がたまる

DNP 法による陽子の負偏極の模式図

CERN COMPASSの偏極標的、糠塚元気(理研BNLセ・山形理)

]]

キーワード 極低温

- · 到達温度 50 mK
- · 冷却能力 350 mK@300mK

キーワード

極低温

· 到達温度 50 mK

· 冷却能力 350 mK@300mK 高磁場

- ・ ソレノイド: 縦方向 2.5 T
- ・ ダイポール:横方向 0.6 T
- ・ アクセプタンス 180 mrad

キーワード

極低温

· 到達温度 50 mK

· 冷却能力 350 mK@300mK 高磁場

- ・ ソレノイド:縦方向 2.5 T
- ダイポール:横方向 0.6 T

・ アクセプタンス 180 mrad 動的核偏極

- ・ 標的物質:NH₃, ⁶LiD
- ・標的セル: 2,3 セル
- ・ マイクロ波:70 GHz
- ・ NMR システム: 10 ch

固体 NH₃

Target Cell

CERN COMPASSの偏極標的、糠塚元気(理研BNLセ・山形理)

17

NMR 信号面積 S と偏極度 P の比例関係を利用する TE キャリブレーション

- 信号面積と偏極度の比例定数を決定する
- ・ TE 時の面積 STE と標的物質を抜いたときの面積 STE, empty を測定する DNP 不可能な目的核(標的物質以外の物質,不対電子がないため)による寄与を取り除く —

$$P = CS = \frac{P_{TE,1K}}{S_{TE,1K} - S_{TE,empty,1K}}S$$

NMR 信号面積 S と偏極度 P の比例関係を利用する TE キャリブレーション

- 信号面積と偏極度の比例定数を決定する
- ・ TE 時の面積 STE と標的物質を抜いたときの面積 STE, empty を測定する DNP 不可能な目的核(標的物質以外の物質,不対電子がないため)による寄与を取り除く ----

$$P = CS = \frac{P_{TE,1K}}{S_{TE,1K} - S_{TE,empty,1K}}S$$

Coil1

NMR 信号面積 S と偏極度 P の比例関係を利用する TE キャリブレーション

- 信号面積と偏極度の比例定数を決定する
- ・ TE 時の面積 STE と標的物質を抜いたときの面積 STE, empty を測定する - DNP 不可能な目的核(標的物質以外の物質,不対電子がないため)による寄与を取り除く

$$P = CS = \frac{P_{TE,1K}}{S_{TE,1K} - S_{TE,empty,1K}}S$$

- DNP 不可能な目的核(標的物質以外の物質,不対電子がないため)による寄与を取り除く

$$P = CS = \frac{P_{TE,1K}}{S_{TE,1K} - S_{TE,empty,1K}}S$$

Polarization in 2018

2018 年 DY ランでの偏極度の平均値

config	Mean	Mean
Up: + Down: -	76.29	-68.27
Up: - Down: +	-68.47	73.57

2018 年 DY ランでの緩和時間

config	Upstream cell (h)	Downstream ce
Up: + Down: -	1400	1000
Up: - Down: +	1000	1200

偏極度						
標的	偏極度	所要時間(日)				
NH ₃	80	1				
NH ₃	90	1~2				
⁶ LiD	30~40	1				
6LiD	50	>7				
6LiD	56	>10				

緩和時間

標的	偏極	磁場 (T)	ビーム	緩和時間 (h)
SMC, NH ₃	横	0.5	μ	500
NH ₃	縦	1.0	μ	9000
NH ₃	横	0.6	μ	9000
NH ₃	横	0.6	π	1000
⁶ LiD	縦	2.5	μ	>15000
⁶ LiD	横	0.5	μ	2000

COMPASS COMPASS PT: 2021 年 SIDIS ラン

MW キャビティの最適化

TE LID B=2.5T; T=2.1K

Zeit-Signal

2021 年:偏極 µ ビームと横偏極 ⁶LiD の深非弾性散乱測定 準備中・・・ **CERN COMPASS**の偏極標的、糠塚元気(理研BNLセ・山形理)

- COMPASS は CERN SPS のビームと偏極標的を用いた核子構造、 ハドロンスペクトロスコピーの研究を行っている。
- COMPASS 偏極標的システム

極低温:

- · ³He/⁴He 希釈冷凍
- · 到達温度 50 mK
- · 冷却能力 350 mK@300mK

高磁場

- ・ ソレノイド:縦方向 2.5 T
- ダイポール:横方向 0.6 T
- ・ アクセプタンス 180 mrad
- 合成磁場で偏極を縦←→横に回転させられる 動的核偏極
 - ・ 標的物質:NH³、⁶LiD
 - ・ 標的セル:2,3 セル
 - マイクロ波:70 GHz、2系統同時稼働でセルごとに偏極の向きを変えられる
 - ・ NMR システム: 10 ch

CERN COMPASSの偏極標的、糠塚元気(理研BNLセ・山形理)

・2021 年 偏極μビームと横偏極 ⁶LiD 標的の SIDIS 測定に向けた準備中

