Charged pion analysis

Single Spin Asymmetry

-Bunch Shuffling, Sys_uncertainty

Korea Univ. Jaehee Yoo

2020. 12. 22 (RBRC experimental group meeting)

Calculation (Formula)

Geometric Weighting

$$A_{N} = \frac{1}{\langle |\cos\phi| \rangle} \frac{1}{P} A_{N}^{raw}$$
$$\sigma_{A_{N}} = |A_{N}| \sqrt{\left(\frac{\sigma_{A_{N}^{raw}}}{A_{N}^{raw}}\right)^{2} + \left(\frac{\sigma_{P}}{P}\right)^{2}}$$

Averaging Over Fills (The Weighted Mean Formula)

$$A_{N,average} = \frac{\frac{\sum_{i=Fill} A_{N,i}}{\sigma^{2}_{A_{N,i}}}}{\sum_{i=Fill} \frac{1}{\sigma^{2}_{A_{N,i}}}}$$
$$\sigma^{2}_{A_{N,average}} = \frac{1}{\frac{1}{\sum_{i=Fill} \frac{1}{\sigma^{2}_{A_{N,i}}}}}$$

Square Root Formula

$$A_N^{raw} = \frac{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} - \sqrt{N_L^{\downarrow} N_R^{\uparrow}}}{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} + \sqrt{N_L^{\downarrow} N_R^{\uparrow}}}$$
$$\sigma_{A_N^{raw}} = \frac{\sqrt{N_L^{\uparrow} N_R^{\downarrow} N_L^{\downarrow} N_R^{\uparrow}}}{\left(\sqrt{N_L^{\uparrow} N_R^{\downarrow}} + \sqrt{N_L^{\downarrow} N_R^{\uparrow}}\right)^2} \sqrt{\frac{1}{N_L^{\uparrow}} + \frac{1}{N_L^{\downarrow}} + \frac{1}{N_R^{\uparrow}} + \frac{1}{N_R^{\downarrow}}}$$

Relative Luminosity Formula

$$\begin{split} A_N^{raw} &= \frac{N_L^{\uparrow} - \mathcal{R} \, N_L^{\downarrow}}{N_L^{\uparrow} + \mathcal{R} \, N_L^{\downarrow}} \\ \sigma_{A_N^{raw}} &= \frac{2 \, \mathcal{R} \, N_L^{\uparrow} N_L^{\downarrow}}{\left(N_L^{\uparrow} + \, \mathcal{R} \, N_L^{\downarrow}\right)^2} \sqrt{\frac{1}{N_L^{\uparrow}} + \frac{1}{N_L^{\downarrow}}} \end{split}$$

Polarization and Rel_lumi

- The proton beam is never 100% polarized and collisions between unpolarized protons dilute the $A_{\mbox{\tiny N}}$ measurement.

The relative luminosity asymmetry formula uses counts that are only on one side of the detector at a time and then calculates the asymmetry for when the beam was spin up versus spin down.

18800

 $R = L_{\uparrow}/L_{\downarrow}$

18850

18900

1.3

1.2

1.1

0.9

0.8

0.7 18650

18700

18750

Blue Beam

Yellow Beam

18950

Fill number

Phi distribution 5 GeV < pT < 6 GeV Acceptance Correction

ACF

A_N - Formula Comparison (Averaged)

Sqrt_minus, Lumi_minus

$$T(p_T) = \frac{A_N^{Sqrt} - A_N^{Lumi}}{\sqrt{|(\sigma^{Sqrt})^2 - (\sigma^{Lumi})^2|}}$$

No systematic error

Before background correction

A_N - Charge Comparison

Sqrt_plus, Sqrt_minus

$$T(p_T) = \frac{A_N^{\pi^-} - A_N^{\pi^+}}{\sqrt{\left|(\sigma^{\pi^-})^2 + (\sigma^{\pi^+})^2\right|}}$$

No systematic error

Before background correction

Hadron Background

Tracks can be divided according to RICH response at 5 to 15 GeV/c.

Only electrons and pions can leave hits on the RICH PMT plane at 5 to 15 GeV/c but not for kaons and protons.

Pions below 5GeV/c do not create Cherenkov light and are therefore suppressed in the spectra.

Particle	Electron	Pion	Proton	Kaon
Threshold $[\text{GeV}/c]$	0.03	4.7	16	30

The energy threshold for the emission of Cherenkov radiation for each particle in the PHENIX RICH.

Electron Background

Electron deposits most of their energy in the EM shower and the EMCal can be used to determine the probability that the shape of cluster associated with the track is electro-magnetic. So primary electron can easily be distinguished with the deposited energy/momentum and shower shape cuts from $\pi \pm$. (e/p < 0.8 cut) The other background is secondary electron from photon conversion. (e/p < 0.2)

Background Subtraction

$$A_{N}^{\pi} = \frac{A_{N}^{\pi, \text{Sig}} \frac{N^{\pi, \text{Sig}} + N^{\pi, Bg}}{N^{\pi, Sig}} - A_{N}^{\text{e, Sig}} \frac{N^{\pi, Bg}}{N^{\pi, Sig}} \frac{N^{e, \text{Sig}} + N^{e, Bg}}{N^{e, Sig}}}{1 - \frac{N^{\pi, Bg}}{N^{\pi, Sig}} \frac{N^{e, Bg}}{N^{e, Sig}}}{\sqrt{[\Delta A_{N}^{\pi, \text{Sig}} \frac{N^{\pi, \text{Sig}} + N^{\pi, Bg}}{N^{\pi, Sig}}]^{2} - [\Delta A_{N}^{\text{e, Sig}} \frac{N^{\pi, Bg}}{N^{\pi, Sig}} \frac{N^{e, \text{Sig}} + N^{e, Bg}}{N^{e, Sig}}]^{2}}{1 - \frac{N^{\pi, Bg}}{N^{\pi, Sig}} \frac{N^{e, Bg}}{N^{e, Sig}}}{N^{e, Sig}}}$$

 $A_N^{\pi, \text{Sig}}$: Asymmetry in the pion enhanced sample $A_N^{e, \text{Sig}}$: Asymmetry in the electrons enhanced sample $N^{\pi, \text{Sig}}$: Signal (pions) yields in the pion enhanced sample $N^{\pi, Bg}$: background (electrons) yields in the pion enhanced sample $N^{e, \text{Sig}}$: Signal (electrons) yields in the electrons enhanced sample $N^{e, Bg}$: background (pions) yields in the electrons enhanced sample

$$\frac{N^{\pi, Bg}}{N^{\pi, Sig}} : \text{Background Fraction in the pions enhanced sample}$$
from
$$BF_{pion-sample} = \frac{A^e_{DATA(E/p\sim 1)}}{A^e_{MC_{lumi_scaled}(E/p\sim 1)}} \times \frac{N^e_{MC_{lumi_scaled}}}{N^{\pi+e}_{DATA}}$$

$$\frac{N^{e, Bg}}{N^{e, Sig}} : \text{Background Fraction in the electrons enhanced sample}$$
from
$$BF_{electron-sample} = \frac{A^e_{DATA(E/p\sim 1)}}{A^e_{MC_{lumi_scaled}(E/p\sim 1)}} \times \frac{N^{\pi}_{MC_{lumi_scaled}}}{N^{e+\pi}_{DATA}}$$

electron enhanced sample

pion enhanced sample

$$BF_{pion-sample} = \frac{A^{e}_{DATA(E/p\sim1)}}{A^{e}_{MC_{lumi_scaled}(E/p\sim1)}} \times \frac{N^{e}_{MC_{lumi_scaled}}}{N^{\pi+e}_{DATA}}$$

 A_{DATA}^{e} , A_{MC}^{e} = Amplitude of the Gaussian centered at around one in the data and the luminosity scaled MC simulation, respectively.

 N_{MC}^{e} , $N_{Data}^{\pi+e}$ = Number of entries in the E/p distributions for the data and the luminosity scaled MC simulation in pion enhanced sample, respectively.

- π[±] Identication Cuts
- I. 2 < pT < 25 (GeV/c)
- II. quality == 31 or 63
- III. n1 >0
- IV. |*BBCZ*|<30 (*cm*)
- V. |DCZed| < 70 (cm)
- VI. Shower shape (prob) < 0.1
- VII. 0.2 < emce/p < 0.8 sect > -9000

	pt	# of (pion+e) from DATA	# of e from MC	Scale Factor (A^e_{DATA} / A^e_{MC})	Yield Ratio ($N_{MC}^{e} / N_{Data}^{\pi+e}$)	Background Fraction (SF * YR)
	ipt = 0	46616.1	719.182	2.82673	0.0154278	0.0436101
	ipt = 1	37940.2	663.398	3.93669	0.0174854	0.0688345
+e [‡]	ipt = 2	17478.8	561.302	4.28138	0.0321134	0.13749
	ipt = 3	13375	573.414	2.77953	0.0428722	0.119165
	ipt = 4	2135.54	160.411	2.86723	0.0751151	0.215372

Compare before/after background correction

$$T(p_T) = \frac{A_N^{Sqrt} - A_N^{Lumi}}{\sqrt{|(\sigma^{Sqrt})^2 - (\sigma^{Lumi})^2|}}$$

No systematic error

After background correction

T-test for charge after background correction

Sqrt_plus_corr, Sqrt_minus_corr

Background_Fraction calculation

Sys_Background_Fraction

pion_min									
	pt	pion_bgkfrac	elec_bgkfrac	A_N	A_N_error				
	0	3.583.E-02	6.519.E-03	6.356.E-03	4.494.E-03				
	1	4.189.E-02	6.569.E-02	9.972.E-03	4.841.E-03				
-	2	1.049.E-01	1.647.E-01	5.538.E-03	7.394.E-03				
	3	5.568.E-02	8.560.E-01	2.882.E-04	7.161.E-03				
	4	1.252.E-01	9.178.E-01	-1.473.E-02	1.430.E-02				
	0	3.583.E-02	6.519.E-03	-6.065.E-03	4.174.E-03				
	1	4.189.E-02	6.569.E-02	-3.943.E-04	4.450.E-03				
+	2	1.049.E-01	1.647.E-01	-5.880.E-03	6.632.E-03				
	3	5.568.E-02	8.560.E-01	3.893.E-03	6.338.E-03				
	4	1.252.E-01	9.178.E-01	1.604.E-02	1.343.E-02				

pion_max									
	pt	pion_bgkfrac	elec_bgkfrac	A_N	A_N_error				
	0	5.358.E-02	6.519.E-03	6.326.E-03	4.581.E-0				
	1	1.358.E-01	6.569.E-02	9.934.E-03	5.464.E-0				
-	2	1.775.E-01	1.647.E-01	7.100.E-03	8.188.E-0				
	3	2.037.E-01	8.560.E-01	-9.079.E-04	9.989.E-0				
	4	3.187.E-01	9.178.E-01	-3.012.E-02	2.192.E-0				
	0	5.358.E-02	6.519.E-03	-5.818.E-03	4.255.E-0				
	1	1.358.E-01	6.569.E-02	-1.052.E-03	5.040.E-0				
+	2	1.775.E-01	1.647.E-01	-4.702.E-03	7.376.E-0				
	3	2.037.E-01	8.560.E-01	3.384.E-03	8.985.E-0				
	4	3.187.E-01	9.178.E-01	1.864.E-02	2.079.E-0				

$\varepsilon_{\pi} = (A_{N}^{\pi^{max}})$ $\varepsilon_{e} = (A_{N}^{e^{max}})$	$-A_N^{\pi^{min}})/2$ $-A_N^{e^{min}})/2$
$\sigma_{syst,bg_frac} =$	$\sqrt{(\varepsilon_{\pi})^2+(\varepsilon_e)^2}$

elec_max								
	pt pion_bgkfrac ele		elec_bgkfrac	cfrac A_N A_N_error		pt		$\sigma_{syst_{,bg_{-}frac}}$
	0	4.361.E-02	7.535.E-03	6.343.E-03	4.532.E-03		0	1 500 E 05
	1	6.883.E-02	7.579.E-02	9.961.E-03	5.009.E-03		0	1.309.E-03
-	2	1.375.E-01	2.037.E-01	6.348.E-03	7.795.E-03		1	1.871.E-05
	3	1.192.E-01	1.160.E+00	-3.630.E-04	8.641.E-03		2	
	4	2.154.E-01	1.243.E+00	-2.481.E-02	1.923.E-02	-	2	7.875.E-04
	0	4.361.E-02	7.535.E-03	-5.956.E-03	4.209.E-03		3	6.156.E-04
	1	6.883.E-02	7.579.E-02	-5.871.E-04	4.607.E-03			
+	2	1.375.E-01	2.037.E-01	-5.269.E-03	7.007.E-03		4	8.349.E-03
	3	1.192.E-01	1.160.E+00	3.616.E-03	7.712.E-03		0	1 236 E-04
	4	2.154.E-01	1.243.E+00	1.775.E-02	1.819.E-02	-	0	1.230.2-04
							1	3.289.E-04

+

4

	elec_min									
	pt	pion_bgkfrac	elec_bgkfrac	A_N	A_N_error					
	0	4.361.E-02	5.710.E-03	6.343.E-03	4.532.E-03					
	1	6.883.E-02	5.732.E-02	9.961.E-03	5.001.E-03					
-	2	1.375.E-01	1.350.E-01	6.150.E-03	7.694.E-03					
	3	1.192.E-01	6.518.E-01	-7.106.E-05	7.956.E-03					
	4	2.154.E-01	6.421.E-01	-1.834.E-02	1.603.E-02					
	0	4.361.E-02	5.710.E-03	-5.957.E-03	4.209.E-03					
	1	6.883.E-02	5.732.E-02	-5.782.E-04	4.600.E-03					
+	2	1.375.E-01	1.350.E-01	-5.419.E-03	6.913.E-03					
	3	1.192.E-01	6.518.E-01	3.740.E-03	7.071.E-03					
	4	2.154.E-01	6.421.E-01	1.665.E-02	1.510.E-02					

 $ScaleFactor = \frac{Gaus_amp_{data} + C \times Gaus_amp_err_{data}}{Gaus_amp_{MC} + D \times Gaus_amp_err_{MC}} \quad \text{where C, D = {-1,0,1}}$

Where C = 1 and D = -1	> max
Where C = -1 and D = 1	> max

5.937.E-04

2.622.E-04 1.412.E-03

Bunch shuffling

<pre>spin_blue[cross] == 1 && spin_yellow[cross] == 1) { //B down, Y down</pre>	1}	
else if (spin_blue[cross] == 1 && spin_yellow[cross] == -1) { //B down	Yup	}
else if (spin_blue[cross] == -1 && spin_yellow[cross] == 1) { //B up, }	Y down	}
else if (spin_blue[cross] == -1 && spin_yellow[cross] == -1) { //B up,	Yup }	ł

Bunch shuffling : For each fill, the polarization directions of each crossing are randomized, and the asymmetry is calculated using the fill group method.

It involves randomizing the polarization directions of the beam such that the physics asymmetry disappears and all that is left are the statistical fluctuations present in the data.

bp0 bp1 bp2			•	<mark>red</mark> = spins ↑ = -1
bp3 bp4				Rhuo
bp5 bp6				= spins↓ = +1
bp7				
bp	0	+ - + - + - + + + + - + - repeat 24		
bp	1	++ repost 4		
bp	2	- + - + + - + - + - + - + - + - + - + -		
bp	3	repost 4		
bp	4	+ - + - · + - + repeat 8		
bp	5			no repeat
bp	6			no repeat
bp	7	* • • • • • • • • • • • • • • • • • • •		no repeat

Pattern of each fillnumber (example)					
RunNumber		FillNumber	Crossing shift	# of pattern	
43	0024	18893	5	1	
43	0116	18894	5	7	
43	0117	18894	5	7	
43	0120	18894	5	7	
43	0123	18894	5	7	
43	0124	18894	5	7	
43	0125	18894	5	7	
43	0128	18894	5	7	
43	0131	18894	5	7	
43	0133	18895	5	3	
43	0134	18895	5	3	
43	0141	18895	5	3	
43	0142	18895	5	3	
43	0143	18895	5	3	
43	0234	18897	5	8	
43	0235	18897	5	8	
43	0236	18897	5	8	

Sys. Unc. From Bunch shuffling

Sys. Unc. From Bunch shuffling
Ex) 1.018
$$\sigma_{stat} = \sqrt{(\sigma_{stat})^2 + (\sigma_{syst})^2}$$
 for π^- 6~7 pt bin.
 $\sigma_{stat} = \sqrt{(1.018)^2 - (1)^2} \approx 0.000954$

A_N with Systematic Uncertainty

A_N with systematic uncertainty

pT(GeV)

		pt	<pt> in GeV/c</pt>	A _N (10 ⁻³)	Stat. (10 ⁻³)	Syst. (bg frraction) (10 ⁻³)	Syst. (bunch shuffling) (10 ⁻³⁾	Syst. (total) (10 ⁻³⁾
		5~6	5.56	6.34	4.53	0.015		0.015
		6~7	6.46	9.96	5	0.019	0.954	0.954
	-	7~8	7.45	6.23	7.74	0.788	0.346	0.860
		8~11	9.08	-0.18	8.22	0.616		0.616
		11~15	12.42	-21.05	17.36	8.349	5.326	9.903
		5~6	5.56	-5.96	4.21	0.124	1.530	1.535
		6~7	6.46	-0.58	4.6	0.329		0.329
	+	7~8	7.45	-5.35	6.95	0.594		0.594
		8~11	9.08	3.69	7.31	0.262	2.701	2.714
		11~15	12.42	17.11	16.38	1.412	6.280	6.437

Back up

 π^+

 π^{-}

 e^+

e

