RHICf data analysis status 26 Jan 2021 Minho Kim ### 1. π^0 : Motivation of STAR-combined analysis - At very low $p_T < 0.07$ GeV/c, the asymmetries are consistent with zero. - As p_T increases, the asymmetries of the very forward π^0 increases approximately reproducing the ones of the forward π^0 . - What makes the non-zero asymmetry of the very forward π^0 ? # 1. π^0 : Event type dependence of A_N # 1. π^0 : Event type dependence of A_N #### 1. π^0 : TODO - RHICf library and reconstruction code needs to be inserted into STAR server. - Since the neutron analysis also needs STAR library, the works which need to touch the STAR framework would be the second priority. - The work which need to touch the RHICf data only will be the first one. ### 2. n: Quick glance of the neutron A_N - Increasing asymmetries as a function of p_T is clearly shown. - The asymmetry slope of middle and top position run looks different. #### 2. n: p_T smearing by poor energy resolution - If the zero-degree position of the beam is inside a tower, p_T smearing in low p_T region can not be identified well. - If it is outside a tower, the smearing should be clearly shown. ## 2. n: Confirmation of p_T smearing in Geant4 - If the neutron has smaller energy, it is usually underestimated. - Bigger energy one is usually overestimated. - Asymmetry slope becomes softer than original one. ### 2. n: Unfolding in Geant4 - \blacksquare One can see that the unfolded p_T is overestimated. - This is because MC inputs and detector response were made by whole energy spectrum. #### 2. n: p_Trec versus p_Ttrue - The p_T true is relatively more forward than p_T rec in the entire energy case. - \blacksquare Unfolded p_T becomes bigger in the entire energy input. ### 2. n: Taking into account E - One can see that If the MC inputs are made based on more correct condition, the unfolding performance is better. (No tail is due to energy cut.) - We're preparing abundant neutron MC statistics for (E, p_T) 2-dimensional unfolding.