RHICf data analysis status

26 Jan 2021 Minho Kim

1. π^0 : Motivation of STAR-combined analysis

- At very low $p_T < 0.07$ GeV/c, the asymmetries are consistent with zero.
- As p_T increases, the asymmetries of the very forward π^0 increases approximately reproducing the ones of the forward π^0 .
- What makes the non-zero asymmetry of the very forward π^0 ?

1. π^0 : Event type dependence of A_N

1. π^0 : Event type dependence of A_N

1. π^0 : TODO

- RHICf library and reconstruction code needs to be inserted into STAR server.
- Since the neutron analysis also needs STAR library, the works which need to touch the STAR framework would be the second priority.
- The work which need to touch the RHICf data only will be the first one.

2. n: Quick glance of the neutron A_N

- Increasing asymmetries as a function of p_T is clearly shown.
- The asymmetry slope of middle and top position run looks different.

2. n: p_T smearing by poor energy resolution

- If the zero-degree position of the beam is inside a tower, p_T smearing in low p_T region can not be identified well.
- If it is outside a tower, the smearing should be clearly shown.

2. n: Confirmation of p_T smearing in Geant4

- If the neutron has smaller energy, it is usually underestimated.
- Bigger energy one is usually overestimated.
- Asymmetry slope becomes softer than original one.

2. n: Unfolding in Geant4

- \blacksquare One can see that the unfolded p_T is overestimated.
- This is because MC inputs and detector response were made by whole energy spectrum.

2. n: p_Trec versus p_Ttrue

- The p_T true is relatively more forward than p_T rec in the entire energy case.
- \blacksquare Unfolded p_T becomes bigger in the entire energy input.

2. n: Taking into account E

- One can see that If the MC inputs are made based on more correct condition, the unfolding performance is better. (No tail is due to energy cut.)
- We're preparing abundant neutron MC statistics for (E, p_T) 2-dimensional unfolding.