Lattice QCD and Hadron Physics -Toward Search for New Hadrons-

Sinya AOKI University of Tsukuba

"New Hadron" Workshop 2010, 2/28-3/1, 2011 @ Nishina Hall, RIKEN

HAL QCD Collaboration

S. Aoki (Tsukuba) T. Doi (Tsukuba) T. Hatsuda (Tokyo) Y. Ikeda (Riken) T. Inoue (Nihon) N. Ishii(Tsukuba) K. Murano (KEK) H. Nemura (Tohoku) K. Sasaki (Tsukuba)

1. Introduction

What binds protons and neutrons inside a nuclei?

gravity: too weak Coulomb: repulsive between pp no force between nn, np

New force (nuclear force)?

1935 H. Yukawa

introduced virtual particles (mesons) to explain the nuclear force

1949 Nobel prize

Phenomenological NN potential (~40 parameters to fit 5000 phase shift data)

stability of nuclei

maximum mass of neutron star

explosion of type II supernova

Origin of RC: "The most fundamental problem in Nuclear physics."

Note: Pauli principle is not essential for the "RC".

QCD based explanation is needed Lattice QCD can explain ?

Plan of my talk

- 1. Introduction
- 2. Strategy in (lattice) QCD to extract "potential"
- 3. Octet baryon interactions

(1) Potentials in the flavor SU(3) symmetric limit

(2) H-dibaryon in the flavor SU(3) limit

4. Search for new hadron in lattice QCD

(1) Proposal for S=-2 inelastic scattering

(2) H-dibaryon in Nature: resonance or bound state ?

5. Summary and Discussion

2. Strategy in (lattice) QCD to extract "potential"

Challenge to Nambu's statement

Y. Nambu, "Quarks : Frontiers in Elementary Particle Physics", World Scientific (1985)

"Even now, it is impossible to completely describe nuclear forces beginning with a fundamental equation. But since we know that nucleons themselves are not elementary, this is like asking if one can exactly deduce the characteristics of a very complex molecule starting from Schroedinger equation, a practically impossible task."

cf. Recent successful result in the strong coupling limit (deForcrand-Fromm, PRL104(2010)112005)

Quantum Field Theoretical consideration

- S-matrix below inelastic threshold. Unitarity gives $S = e^{2i\delta}$
- Nambu-Bethe-Salpeter (NBS) Wave function

$$E = 2\sqrt{\mathbf{k}^2 + m_N^2}$$

 $E < E_{th}$

 $\varphi_E(\mathbf{r}) = \langle 0 | N(\mathbf{x} + \mathbf{r}, 0) N(\mathbf{x}, 0) | 6q, E \rangle$

QCD eigen-state with energy E and #quark =6

$$N(x) = \varepsilon_{abc} q^a(x) q^b(x) q^c(x)$$
: local operator

off-shell T-matrix

$$\begin{split} \varphi_E(\mathbf{r}) &= e^{i\mathbf{k}\cdot\mathbf{r}} + \int \frac{d^3p}{(2\pi)^3} e^{i\mathbf{p}\cdot\mathbf{r}} \frac{E_k + E_p}{8E_p^2} \frac{T(\mathbf{p}, -\mathbf{p} \leftarrow \mathbf{k}, -\mathbf{k})}{\mathbf{p}^2 - \mathbf{k}^2 - i\epsilon} \\ &+ \mathcal{I}(\mathbf{r}) \\ \text{inelastic contribution} &\propto O\left(e^{-\sqrt{E_{th}^2 - E^2}|\mathbf{r}|}\right) \end{split}$$

C.-J.D.Lin et al., NPB69(2001) 467 CP-PACS Coll., PRD71 (2005) 094504

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

We define the potential as

$$[\epsilon_k - H_0]\varphi_E(\mathbf{x}) = \int d^3y \, U(\mathbf{x}, \mathbf{y})\varphi_E(\mathbf{y}) \qquad \epsilon_k = \frac{\mathbf{k}^2}{2\mu} \qquad H_0 = \frac{-\nabla^2}{2\mu}$$

Velocity expansion
$$U(\mathbf{x}, \mathbf{y}) = V(\mathbf{x}, \nabla)\delta^3(\mathbf{x} - \mathbf{y})$$

Okubo-Marshak (1958)

$$V(\mathbf{x}, \nabla) = V_0(r) + V_{\sigma}(r)(\sigma_1 \cdot \sigma_2) + V_T(r)S_{12} + V_{\mathrm{LS}}(r)\mathbf{L} \cdot \mathbf{S} + O(\nabla^2)$$

$$LO \qquad LO \qquad LO \qquad \text{NLO} \qquad \text{NNLO}$$
tensor operator $S_{12} = \frac{3}{r^2}(\sigma_1 \cdot \mathbf{x})(\sigma_2 \cdot \mathbf{x}) - (\sigma_1 \cdot \sigma_2)$
spins

We calculate observables: phase shift, binding energy etc. using this approximated potential.

Lattice QCD

- well-defined statistical system (finite a and L)
- gauge invarinat
- fully non-perturbative

Quenched QCD : neglects creation-anihilation of quark-anitiquak pair Full QCD : includes creation-anihilation of quark-anitiquak pair

Monte-Calro

simulations

NBS wave function from lattice QCD

$$\langle 0|n_{\beta}(\mathbf{y},t)p_{\alpha}(\mathbf{x},t)\overline{\mathcal{J}}_{pn}(t_{0})|0\rangle = \langle 0|n_{\beta}(\mathbf{y},t)p_{\alpha}(\mathbf{x},t)\sum_{n}|E_{n}\rangle\langle E_{n}|\overline{\mathcal{J}}_{pn}(t_{0})|0\rangle$$

$$= \sum_{n}A_{n}\langle 0|n_{\beta}(\mathbf{y},t)p_{\alpha}(\mathbf{x},t)|E_{n}\rangle e^{-E_{n}(t-t_{0})} \longrightarrow A_{0}\varphi_{\alpha\beta}^{E_{0}}(\mathbf{x}-\mathbf{y})e^{-E_{0}(t-t_{0})}$$

$$t \to \infty$$

$$A_n = \langle E_n | \overline{\mathcal{J}}_{pn}(t_0) | 0 \rangle$$

Wall source $\overline{\mathcal{J}}_{pn}(t_0) = p^{\text{wall}}(t_0) n^{\text{wall}}(t_0) \qquad q(\mathbf{x}, t_0) \to q^{\text{wall}}(t_0) = \sum_{\mathbf{x}} q(\mathbf{x}, t_0)$

$$L = 0 \qquad P = +$$

with Coulomb gauge fixing

spin
$$\frac{1}{2}\otimes \frac{1}{2}=1\oplus 0$$

$$^{2S+1}L_J \implies {}^{3}S_1 = {}^{1}S_0$$

NN wave function

Quenched QCD

a=0.137fm

(quenched) potentials

LO (effective) central Potential

$$V(r; {}^{1}S_{0}) = V_{0}^{(I=1)}(r) + V_{\sigma}^{(I=1)}(r)$$
$$V(r; {}^{3}S_{1}) = V_{0}^{(I=0)}(r) - 3V_{\sigma}^{(I=0)}(r)$$

$$E \simeq 0$$
 $m_{\pi} \simeq 0.53 \text{ GeV}$

Qualitative features of NN potential are reproduced !

Ishii-Aoki-Hatsuda, PRL90(2007)0022001

This paper has been selected as one of 21 papers in Nature Research Highlights 2007

Frequently Asked Questions

[Q1] Scheme/Operator dependence of the potential

- the potential depends on the definition of the wave function, in particular, on the choice of the nucleon operator N(x). (Schemedependence)
 - local operator = convenient choice for reduction formula
- Moreover, the potential itself is NOT a physical observable.
 Therefore it is NOT unique and is naturally scheme-dependent.
 - Observables: scattering phase shift of NN, binding energy of deuteron

QM: (wave function, potential) \rightarrow observables QFT: (asymptotic field, vertex) \rightarrow observables EFT: (choice of field, vertex) \rightarrow observables

- Is the scheme-dependent potential useful ? Yes !
 - useful to understand/describe physics
 - a similar example: running coupling
 - Although the running coupling is scheme-dependent, it is useful to understand the deep inelastic scattering data (asymptotic freedom).
- "good" scheme ?
 - good convergence of the perturbative expansion for the running coupling.
 - good convergence of the derivative expansion for the potential ?
 - completely local and energy-independent one is the best and must be unique if exists. (Inverse scattering method)

[Q2] Energy dependence of the potential

Non-local, E-independent

$$\left(E + \frac{\nabla^2}{2m}\right)\varphi_E(\mathbf{x}) = \int d^3 \mathbf{y} U(\mathbf{x}, \mathbf{y})\varphi_E(\mathbf{y}) \qquad V_E(\mathbf{x})\varphi_E(\mathbf{x}) = \left(E + \frac{\nabla^2}{2m}\right)\varphi_E(\mathbf{x})$$

non-locality can be determined order by order in velocity expansion (cf. ChPT)

$$V(\mathbf{x}, \nabla) = V_C(r) + V_T(r)S_{12} + V_{\rm LS}(r)\mathbf{L} \cdot \mathbf{S} + \{V_D(r), \nabla^2\} + \cdots$$

Numerical check in quenched QCD

K. Murano, N. Ishii, S. Aoki, T. Hatsuda

PoS Lattice2009 (2009)126.

Anti-Periodic B.C.

• PBC (E~0 MeV)

• APBC (E~46 MeV)

3. Octet baryon interactions

Octet Baryon interactions

- no phase shift available for YN and YY scattering
- plenty of hyper-nucleus data will be soon available at J-PARC

also in GSI

- prediction from lattice QCD
- difference between NN and YN ?

Neutron Number

(1) Potentials in the flavor SU(3

- 1. First setup to predict YN, YY interactions not accessible in exp.
- 2. Origin of the repulsive core (universal or not)

 $8 \times 9 - 27 \perp 9c \perp 1 \perp 10^* \perp 10 \perp 9c$ $8 \times 8 = \underline{27 + 8s + 1} + \underline{10^* + 10 + 8a} + \underline{8a}$ Symmetric Anti-symmetric netric

6 independent potential in flavor-basis

$$\overset{(1)}{\overset{(2)}}}}{\overset{(2)}{\overset{(1}{\overset{(2)}{\overset{(2)}{\overset{(2)}{\overset{(2)}}{\overset{(2)}}{\overset{(2)}{\overset{(1}{\overset{(2)}{\overset{(1}{\overset{(1}{\overset{(1}{\overset{(1}}{\overset{(1}}{\overset{(1}}{\overset{(1}}{\overset{(1}}{\overset{(1}{$$

Potential(full QCD)

Inoue et al. (HAL QCD Coll.), PTP124(2010)591

a=0.12 fm, L=2 fm BG/L@KEK

S(spin)=0

S(spin)=1

27, 10*: channels NN belongs same behaviors as NN potentials

(2) H-dibaryon in the flavor SU(3) symmetric limit

Attractive potential in the flavor singlet channel

possibility of a bound state (H-dibaryon)

 $\Lambda\Lambda - N\Xi - \Sigma\Sigma$

However, it is difficult to distinguish a bound state from scattering states in the finite volume. Additional calculations in different volumes are needed.

Inoue *et al.* (HAL QCD Coll.), "Bound H-dibaryon in Flavor SU(3) Limit of Lattice QCD", arXiv:1012.5928[hep-lat].

T2K-Tsukuba BG/L@KEK

volume dependence

pion mass dependence

L=3 fm is enough for the potential.

lighter the pion mass, stronger the attraction

fit the potential at L=4 fm by $V(r) = a_1 e^{-a_2 r^2} + a_3 \left(1 - e^{-a_4 r^2}\right)^2 \left(\frac{e^{-a_5 r}}{r}\right)^2$

Solve Schroedinger equation in the infinite volume with the fitted potential(@4fm) \Rightarrow A bound state(H-dibaryon) exists !

An H-dibaryon exists in the flavor SU(3) limit ! binding energy = 30-40 MeV, weak quark mass dependence.

4. Search for new hadrons in lattice QCD

(1) Proposal for S=-2 In-elastic scattering

 $m_N = 939 \text{ MeV}, m_\Lambda = 1116 \text{ MeV}, m_\Sigma = 1193 \text{ MeV}, m_\Xi = 1318 \text{ MeV}$ S=-2 System(I=0)

 $M_{\Lambda\Lambda} = 2232 \text{ MeV} < M_{N\Xi} = 2257 \text{ MeV} < M_{\Sigma\Sigma} = 2386 \text{ MeV}$

The eigen-state of QCD in the finite box is a mixture of them:

$$|S = -2, I = 0, E\rangle_{L} = c_{1}(L)|\Lambda\Lambda, E\rangle + c_{2}(L)|\Xi N, E\rangle + c_{3}(L)|\Sigma\Sigma, E\rangle$$
$$E = 2\sqrt{m_{\Lambda}^{2} + \mathbf{p}_{1}^{2}} = \sqrt{m_{\Xi}^{2} + \mathbf{p}_{2}^{2}} + \sqrt{m_{N}^{2} + \mathbf{p}_{2}^{2}} = 2\sqrt{m_{\Sigma}^{2} + \mathbf{p}_{3}^{2}}$$

In this situation, we can not directly extract the scattering phase shift in lattice QCD.

HAL's proposal

Let us consider 2-channel problem for simplicity.

NBS wave functions for 2 channels at 2 values of energy:

$$\Psi_{\alpha}^{\Lambda\Lambda}(\mathbf{x}) = \langle 0 | \Lambda(\mathbf{x}) \Lambda(\mathbf{0}) | E_{\alpha} \rangle$$
$$\Psi_{\alpha}^{\Xi N}(\mathbf{x}) = \langle 0 | \Xi(\mathbf{x}) N(\mathbf{0}) | E_{\alpha} \rangle$$

$$\alpha = 1, 2$$

They satisfy

$$(\nabla^2 + \mathbf{p}_{\alpha}^2) \Psi_{\alpha}^{\Lambda\Lambda}(\mathbf{x}) = 0$$
$$(\nabla^2 + \mathbf{q}_{\alpha}^2) \Psi_{\alpha}^{\Xi N}(\mathbf{x}) = 0$$

$$|\mathbf{x}| \to \infty$$

We define the "potential" from the coupled channel Schroedinger equation:

$$\begin{pmatrix} (E_1 - H_0^X)\Psi_1^X(\mathbf{x})\\ (E_2 - H_0^X)\Psi_2^X(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \Psi_1^X(\mathbf{x}) & \Psi_1^Y(\mathbf{x})\\ \Psi_2^X(\mathbf{x}) & \Psi_2^Y(\mathbf{x}) \end{pmatrix} \begin{pmatrix} V^{X \leftarrow X}(\mathbf{x})\\ V^{X \leftarrow Y}(\mathbf{x}) \end{pmatrix} \qquad X \neq Y$$
$$E_\alpha = \frac{\mathbf{p}_\alpha^2}{2\mu_{\Lambda\Lambda}}, \ \frac{\mathbf{q}_\alpha^2}{2\mu_{\Xi N}} \qquad X, Y = \Lambda\Lambda \text{ or } \Xi N$$

$$\left(\begin{array}{c}V^{X \leftarrow X}(\mathbf{x})\\V^{X \leftarrow Y}(\mathbf{x})\end{array}\right) = \left(\begin{array}{c}\Psi_1^X(\mathbf{x}) & \Psi_1^Y(\mathbf{x})\\\Psi_2^X(\mathbf{x}) & \Psi_2^Y(\mathbf{x})\end{array}\right)^{-1} \left(\begin{array}{c}(E_1 - H_0^X)\Psi_1^X(\mathbf{x})\\(E_2 - H_0^X)\Psi_2^X(\mathbf{x})\end{array}\right)$$

Using the potentials:

$$\begin{pmatrix} V^{\Lambda\Lambda\leftarrow\Lambda\Lambda}(\mathbf{x}) & V^{\Xi N\leftarrow\Lambda\Lambda}(\mathbf{x}) \\ V^{\Lambda\Lambda\leftarrow\Xi N}(\mathbf{x}) & V^{\Xi N\leftarrow\Xi N}(\mathbf{x}) \end{pmatrix}$$

we solve the coupled channel Schroedinger equation in the infinite volume with an appropriate boundary condition.

For example, we take the incomming $\Lambda\Lambda$ state by hand.

In this way, we can avoid the mixture of several "in"-states.

$$|S = -2, I = 0, E\rangle_L = c_1(L)|\Lambda\Lambda, E\rangle + c_2(L)|\Xi N, E\rangle + c_3(L)|\Sigma\Sigma, E\rangle$$

Lattice is a tool to extract the interaction kernel ("T-matrix" or "potential").

Preliminary results from HAL QCD Collaboration

2+1 flavor full QCD

a=0.1 fm, L=2.9 fm

 $m_{\pi} \simeq 870 \text{ MeV}$

Sasaki for HAL QCD Collaboration

Diagonal part of potential matrix

ΣΣ-ΣΣ NE-NE ΛΛ-ΛΛ 6000 6000 6000 400 400 300 300 300 200 200 200 4000 4000 4000 100 100 100 2000 2000 2000 -100 -100 1.5 0 0 1.5 0.5 0.5 1.5 0.5 15 ō 0

Non-diagonal part of potential matrix

 $V_{A-B} \simeq V_{B-A}$

Hermiticity ! (non-trivial check)

(2) H-dibaryon in Nature: resonance or bound state ?

- I. S=-2 singlet state become the bound state in flavor SU(3) limit.
- II. In the real world (s is heavier than u,d), a resonance state or a bound state appears.
- III. We can determine which possibility is realized by solving the coupled channel Schroedinger equation with the 3 x 3 potential matrix.
- IV. Trial demonstration for III.

IV.1. Use potential in SU(3) limit Inoue for HAL QCD Collaboration

IV.2. Introduce mass difference only from 2+1 simulation

Potentials in particle basis in SU(3) limit

 $S = -2, I = 0, {}^{1}S_{0}$ scattering

$$E^{(1)} = -40 \text{ MeV}$$

SU(3) limit

"2+1 flavor"

Phase shift in "2+1 flavors"

 $E^{(1)} = -25 \text{ MeV}$

2011年2月28日月曜日

 $E^{(1)} = -40 \text{ MeV}$

5. Summary and Discussion

- We can investigate an existence of new hadrons in QCD using the potential (HAL QCD's method).
 - Calculate potential (matrix) in lattice QCD on a finite box.
 - Calculate phase shift by solving (coupled channel) Shroedinger equation in infinite volume.
 - bound/resonance/scattering
- H-dibaryon
 - bound state exists in the SU(3) limit
 - resonance or bound state in Nature ?
- Exotic particle search by potentials between stable particles
 - penta-quark, X, Y etc.
 - potentials contain all informations -> bound state(energy,size)/ resonance state(energy,width)
 - extension to "potentials" among 3 or more particles

unstable particle as a resonance

$$\pi^+\pi^-$$
 scattering (ρ meson width)

Finite volume method

ETMC: Feng-Jansen-Renner, PLB684(2010)

