Report on NPC Activities

- Introduction of NPC and Physics Subjects

- Individual Analysis Status & Takizawa-san's Comment
- Contributions other than Analyses

Norihito Muramatsu New Hadron Workshop, 28 Feb, 2011 @ RIKEN

NPC = Nuclear Physics Consortium

18 people from hadron physics community have made the consortium with interests to analyze Belle data from Mar 2009.

RCNP, Osaka Univ. ٠

: T. Nakano, S. Ajimura, T. Hotta, Y. Morino, N. Muramatsu

: **M. Niiyama,** H. Fujioka

: T. Matsuda, T. Motoda

: K. Nakazawa, M. Sumihama

: **H. Kanda,** K. Miwa

- Tokyo Institute of Technology : *M. Uchida, T. Shibata, N. Kobayashi* ٠
- Kyoto Univ. ٠
- Tohoku Univ. ۲
- Univ. of Miyazaki ٠
- Gifu Univ. ٠
- Yamagata Univ. ٠
- : Y. Miyachi Showa Pharmaceutical Univ. : M. Takizawa ٠

- Bold = NPC & NPC-II
- Participating from LEPS, JPARC, COMPASS, HERMES, ..., and also from a theory side.
- Most of persons belong to NPC-II for the Belle-II experiment.

What's NPC ?

- Now NPC is one of the groups in the Belle Collaboration.
- Actually the members belong to B01, D01, E01, or not.
- However, our interests are widely overlapped with A01.

 \Rightarrow Closely correlated works :

New hadron meeting by Belle-A01 + NPC

Common interests

- Exotic hadron structure (penta- & tetra-quark, molecule, ...)
- Nature of scalar & axial vector mesons (glueball, mixing, ...)
- Hadron-hadron correlation (bound-state, confinement, ...)
- Hadron fragmentation (color string, gluon exchange, ...)

NPC

- Relatively low energy experiments w/ a fixed target
- Hadrons w/ u,d,s-quarks

Belle

- High energy collider experiment
- B-meson factory + huge production of charmed meson & charmonium

Why Belle data is interesting for us?

- High statistics (Exotic & low production rate particles, high precision measurements of hadron properties)
- Large acceptance detector w/ excellent momentum resolution and PID ability
- High energy
 - (1) heavy quark hadrons

Produced by Y productions, b→c decays, and hard gluon exchanges. Kinetic energy term is small.

(2) Also rich production of light quark hadrons

Produced by heavy hadron decays [△M in b→c decays (Matsuda)]
 and color string breaking in hadronization.
 Dynamical structure inside hadron becomes more important.
 Close to interests of lower energy experiments.

Physics Subjects

- Understanding hadron structures by investigating exotic hadrons, controversial hadrons, hadron-hadron interactions, fragmentations, ...
- Light quark hadrons

scalar & axial vector mesons : Matsuda, Motoda statistical treatment of production rates (also related to exotic hadron production rate) : Uchida meson-meson interaction : Niiyama

- Fragmentation functions for light quark hadrons Interference FF : Kobayashi
- Heavy quark hadrons X(3872) : Muramatsu

All analyses are under way & individual status is shown from now.

Study of Light quark mesons from B decays T. Matsuda,T. Motoda (Univ. of Miyazaki) with Prof. J. MacNaughton

Motivation:

• Nature of scalar and axial vector mesons are still discussed.

σ, κ, f₀(980), a₀(980), a₁, K₁,

 \Rightarrow molecule states, tetraquarks, glueballs or others?

 \Rightarrow related to chiral symmetric structures of light quarks?

Strategy and Method:

- Construct and carry out **Partial Wave Analyses**.
- Study properties of axial vector, scalar mesons: mass, width, mass line shape, branching ratio, mixing angles, and even existence.
- Currently two reactions are being analyzed.

1. $B^0 \rightarrow D^{*+/-} a_1^{-/+}$

2. B⁺→J/ψ K₁(1270); **K₁(1270)→ωK**

1. $B^0 \rightarrow D^{*+/-} a_1^{-/+}$

• Mass & width of a₁ are not defined well. (PDG: M=1230±40 MeV, Γ=250~600 MeV)

- S. Leupold, POS (CD09) 051 suggests a possibility of ρ - π molecule state.
- Old scattering experiments : Various states are overlapped each other.
 - \Rightarrow Decay reaction: Initial quantum numbers are well defined.

So far a_1 has been studied by τ decays, but a_1 width cannot be extracted correctly. (M_{τ} =1.777 GeV/c²)

The skim code of this reaction is almost completed by Prof. J. MacNaughton. PWA programs are being produced.

2. B⁺ \rightarrow J/ ψ K₁(1270); K₁(1270) \rightarrow K ω \rightarrow K $\pi\pi\pi$

- Recently Belle renewed the mass and width of $K_1(1270)$ in $B \rightarrow J/\psi K\pi\pi$ channel. This must be also checked by $K\pi\pi\pi$ mode.
- BR($K_1 \rightarrow K\omega$) may be larger than PDG (11%) because of strong $\rho\omega$ interference.
- Skim programs for $B^+ \rightarrow J/\psi K^+ \omega$ are under construction, and very preliminary skim data is being obtained.

Production Rate of Light Hadrons (M. Uchida)

- Production rate of light hadrons (qq/qqq) tend to be proportional to their masses. (LEP, BaBar)
- Statistical formalism
 [Y.-J. Pei, hep-ph/9610329]

$$< N > = C \cdot \frac{2J+1}{C_B} \cdot (\gamma_s)^{N_s} \cdot \mathrm{e}^{-\frac{E_{bind}}{T}}$$

- Discrepancy from the global trend indicates the different production mechanism and/ or internal structure from the 2 or 3 constituent quarks.
 - $\Rightarrow \Lambda$ (1405) and some exotic candidate hadrons will be examined.

Invariant mass distributions (36 fb⁻¹ / 1000 fb⁻¹)

 $\Omega^{-} \rightarrow \Lambda K^{-}$: 3000 events

Fitting function : Breit-Wigner + Chevyshev 3rd pol.

List of Hadrons under considerations

Mesons	Decay	St
π		Cut
η	γγ	Cut
η'	π⁺π⁻ η	Cut
К		Cut
K*(892)	Κπ	Cut
ρ	ππ	Cut
ω	$\pi^+\pi^-\pi^0$	Cut
φ	K⁺K⁻	Cut
a ⁰	$π^0$ η	Fι
f ⁰	ππ	Fu

Status		
Cuts optimized		
Future plan		
Future plan		

Baryons	Decay	Status
Ρ		Cuts optimized
Δ	Νπ	In progress
Λ	рπ	Cuts optimized
Σ	$\Lambda\gamma$	Cuts optimized
Σ(1385)	$\Lambda\pi$	In progress
Λ (1405)	$\Sigma\pi$	In progress
Λ (1520)	рК⁻	Cuts optimized
Ξ	$\Lambda\pi$	Cuts optimized
Ω	ΛK^{-}	Cuts optimized
N(1535)	рη	Future plan

Measurements of Scattering Lengths (M. Niiyama)

- Meson-meson scattering length is an important fundamental variable in hadron physics. While ππ channel has been studied in detail, KK & Kπ channels are not studied well.
- Analysis strategy : Using continuum data, the meson-meson invariant mass distributions will be compared with phase space in the kinematical region of relative momentum ~ 0.
- Belle data is suitable for this analysis because of (1) high statistics,
 (2) variations of meson pairs, and (3) good momentum resolutions [no target material, w/ vertex detector].

$\pi^+\pi^-$ and K⁺K⁻ invariant mass spectrum

To do: • Acceptance corrections.

- Understand compositions of invariant mass distributions.
- How to extract scattering lengths is under discussions.
- Systematic study for various meson-meson interactions.

Interference Fragmentation Function (N. Kobayashi)

• Fragmentation Function for light quark hadrons

⇒ hard scattering process + *non-perturbative hadronization*

 $D_q^h(z)$: Probabilities for a quark (q) to fragment into hadron (h) depending on fractional momentum (z=P_h/|P_q|).

• Momentum conservation : $\sum_{h} \int_{0}^{1} dz \ z D_{q}^{h}(z) = 1$

- IFF H_q^{*}(z,M_h²): Fragmentation of a quark (q) with transverse spin into a pair of unpolarized hadrons.
- Model predictions by Jaffe et al. [PRL 80] & Radici et al. [PRD 65] for $\pi\pi$ (will be published), KK, & K π (will be analyzed by N.K.)

IFF Physics framework

- Measure the relative angle

 (φ_{1R}+φ_{2R}) of two planes which individually include a hadron pair from either jet.
- Obtain an asymmetric distribution in terms of $\varphi_{1R} + \varphi_{2R}$ to *extract modulation amplitude*

due to transverse spins of quark and anti-quark.

$$A \propto H_1^{\angle}(z_1, m_1)\overline{H}_1^{\angle}(z_2, m_2)\cos(\varphi_1 + \varphi_2)$$

 $e^+e^- \rightarrow (h_1h_2)_{jet1}(h_3h_4)_{jet2}X$

Now checking consistencies of analysis procedures and results using $\pi\pi$ mode.

Thrust :

π+ π-

0.03

0.025

0.02

0.015

0.01

0.005

8.2

0.3

0.4

$$\underline{\underline{\max}} \; \frac{\sum_{h} |\mathbf{P}_{\mathbf{h}}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}|}{\sum_{h} |P_{h}^{\mathrm{CMS}}|}$$

fractional energy

0.7

(input of IFF)

= fractional momentum

0.8

0.9

1

z

pipi_hist

Entries 4742904

0.002

0.8

0.82

0.84

0.86

0.88

Mean

RMS

Fractional energy :

T

$$z = \frac{2E_h}{\sqrt{s}}$$
 , $\sqrt{s} = 10.52 \, GeV$

0.6

0.5

Thrust

0.9

0.94

0.92

0.98

1

thrust

0.96

X(3872) \rightarrow J/ $\psi \pi^0 \pi^0$ in B decays (N. Muramatsu)

Discussion of C-parity

C=+1: $\Gamma(X(3872) \rightarrow J/\psi \pi^0 \pi^0) / \Gamma(X(3872) \rightarrow J/\psi \pi^+ \pi^+) = 0$ [I=1 through J/ $\psi \rho$] C=-1: 1/2 [I=0, ex. ψ ']

If X(3872) is 1⁺⁺ DD^{*} molecule, this decay mode cannot be seen.

Y(4S)→B⁺B⁻ [51.6%] ; B⁺⁻→K⁺⁻X(3872) ; X(3872)→J/ $\psi\pi^{0}\pi^{0}$ Y(4S)→B⁰B⁰ [48.4%] ; B⁰→K⁰X(3872) ; K_S→π⁺π⁻ [50% x 69.20%] ; X(3872)→J/ $\psi\pi^{0}\pi^{0}$

Previous measurement at Belle : hep-ex0408116 using 253 fb⁻¹

Before examining X(3872), $\psi' \rightarrow J/\psi \pi^0 \pi^0$ [16.84%] must be checked as a control sample. \Rightarrow Now optimizing selection criteria.

Here are some snap shots of event reconstruction w/ ψ '-signal MC (only B⁺ \rightarrow K⁺ ψ ') as an example.

Comments from M. Takizawa Why so many exotic charm hadrons?

- Bound state of hadrons : Kinetic energy vs. Potential energy Heavier Hadron ⇒ Smaller kinetic term
- Deuteron (proton, neutron)
 Strength of the interaction between hadrons is just making the bound state of the hadrons of 1 GeV and/or above.
- Charm quark hadrons : Mass is bigger than 1 GeV
 ⇒ High possibility of forming the bound states
 ex. Many X, Y, Z states have been found.

H_c dibaryon : Flavor singlet state w/uuddsc

Repulsive interaction becomes $\sim 1/2$.

T_{cc} : udcc̄ exotic hadron w/ 0⁺ or 1⁺

• Bottom quark hadrons \Rightarrow More probable

A Many exotic hadrons with charm and bottom flavors.

Contributions other than analyses

- 18 shifts in 2009 & 6 shifts in 2010
- Efficiency, fake rate & systematic error tables for Belle-PID with great helps of Nishida-san (KID: Niiyama, eid/muid : Uchida, Sumihama, Muramatsu)
- Internal referees of Belle papers (Muramatsu, Matsuda, Niiyama, Miyachi, Uchida) ⇒ Having physics discussions & Learning Belle analysis procedures.
- NPC-II service task : *CDC-related works* (Uchida et al.)
- Preparation of *computing environment at RCNP* (Kanda)

NPC-II Contribution

- *Removal of Belle-CDC cables* on 27 & 28 Dec, 2010 (Uchida, Sumihama, Matsuda, Motoda, Kobayashi)
- Qualification assurance for sense/potential wire (this summer)
- Contribution for CDC part of Belle II simulator
 - (Fine tuning of CDC geometry, response function, etc)
 - + Event generation for hadron physics.

Preparations of analysis environment at RCNP computers (Kanda)

☆ Motivation : To increase *analysis speed and performance* of NPC members, and to dig up *analysis man powers* inside NPC.

 \bigstar Comparisons of computing powers

	B computers	RCNP computers
CPU & clock	Intel Xeon X5460 (3.16 GHz)	Intel Xeon X5680 (3.33 GHz)
#CPU	2 x 480 node	2 x 76 node
Throughput/CPU	48	128
Total throughput	2.37	1
Data storage	3.5 PB Tape + 1.5 PB HDD	3.5 PB
#User	600(FY2008)	~10 (current active user)

☆ Working Status

1. Transferring Hadron skim data and generic MC data w/ ~1.1 TB/day.

22% of the hadron skim data (78.5 TB) has been transferred. Two more months will be necessary.

2. Construction of BASF (Belle AnalysiS Framework) environment will start soon.

Final Remarks

- NPC has interests to understand *hadron structures and interactions* from various aspects. Belle data is new and exciting for us with many benefits. We can explore quark (and gluon) configurations *from dynamical to static ranges*.
- We have entered an *'active phase'* in Belle data analysis with great helps of A01 people. *We really thank to Belle-A01 for a good collaboration*.
- We need helps & feedbacks from theorists. Any comments & requests are very welcome.
- Hopefully we will increase man powers and raise up analysis activities with *the new computing environment*. In addition, we have started to contribute to Belle-II (*NPC-II*).