# A01:Research of exotic hadrons at B-factory experiment 

Kenkichi Miyabayashi
(Nara Women's Univ.)
2011 Feb. 28 ${ }^{\text {th }}$, Riken
New Hadron WS

## Outline

- Status of KEKB and Belle
- Highlights during FY2010
- New Postdocs
- New computer
- New organization
- New analysis attempts
- Summary


## KEKB operation completed on June 30, 2010



First physics run on June 2, 1999
Last physics run on June 30, 2010
$\mathrm{L}_{\text {peak }}=2.1 \times 10^{34} / \mathrm{cm}^{2} / \mathrm{s}$
$\mathrm{L}_{\text {int }}>1 \mathrm{ab}^{-1}$

## Belle Data Grand Reprocess

- New charged track finding algorithm.
- Hit threshold tuned as a func. of $\theta$ in Csl cal.
$\downarrow$
- "SVD2" data(2003 autumn ~, 620M BB $)$ have been reprocessed by the updated software.
- Started from 2009 July, completed 2010 Feb.
- Total $\Upsilon(4 \mathrm{~S})$ corresponds to 772 M BB.


## Effects of Grand Reprocess



After grand reprocess
(Before grand $\mathrm{N}_{s}=2916 \pm 61$ ( $+50 \%$ )
reprocess) $\quad \mathrm{N}_{\mathrm{s}}=559 \pm 25(+66 \%)$

$$
\psi(2 S)\left(\mathrm{J} / \psi \pi^{+} \pi^{-}\right) \mathbf{K}^{+}
$$

## Effects of Grand Reprocess (cont.)

$$
\mathrm{B} \rightarrow\left[\left[\mathrm{~K} \cdot \pi^{+}\right]_{\mathrm{D}} \pi^{\circ}\right]_{\mathrm{D}^{*} 0} \pi
$$

$$
\mathrm{B} \rightarrow\left[\left[K-\pi^{+}\right]_{D^{\circ}} \circ\right]_{D^{* o}} \pi
$$




For the B decays containing $\pi^{0} / \gamma$, improvement is also clearly seen.

Plots made by Y.Horii

## $X(3872) \rightarrow J / \psi \gamma, \psi^{\prime} \gamma$



If $X(3872)$ is pure $D^{0} D^{*}$ molecule, $\operatorname{Br}\left(X(3872) \rightarrow \psi^{\prime} \gamma\right)<\operatorname{Br}(X(3872) \rightarrow J / \psi \gamma)$ cf. Phys.Rept.429, 243(2006)
$\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma$ has been confirmed by both Belle and BaBar. cf. arXiv:0505037, PRD74,071101(2006), PRL102,132001(2009).

BaBar reported an evidence for $\mathrm{X}(3872) \rightarrow \psi^{\prime} \gamma$

$$
\frac{\operatorname{Br}\left(\mathrm{X}(3872) \rightarrow \psi^{\prime} \gamma\right)}{\operatorname{Br}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)}=3.5 \pm 1.4 \text { cf. PRL102,132001(2009) }
$$

Belle should check if it is confirmed.

## Revisit $\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma$



## How about $X(3872) \rightarrow \psi^{\prime} \gamma$ ?



No significant signal( $\leftarrow$ contradicting with BaBar).

$$
\frac{\operatorname{Br}\left(X(3872) \rightarrow \psi^{\prime} \gamma\right)}{\operatorname{Br}(X(3872) \rightarrow J / \psi \gamma)}<2.1 @ 90 \% \text { C.L. }
$$

## $\mathrm{M}(\mathrm{J} / \psi \omega)$ in $\gamma \gamma\left(\mathrm{P}_{\mathrm{t}}<0.1 \mathrm{GeV}\right)$



W (GeV)
Clear enhancement seen just above $\mathrm{J} / \psi \omega$ threshold! Statistical significance $=7.7 \sigma$, Signal $=49 \pm 14$ (stat) $\pm 4$ events. $\mathrm{M}=3915 \pm 3$ (stat) $\pm 2$ (syst) $\mathrm{MeV}, \Gamma=17 \pm 10$ (stat) $\pm 3$ (syst) MeV JPC not yet determined (need much more statistics).
$\rightarrow$ Revisit $\mathrm{Y}(3940)$ mass, width, JPC in $\mathrm{B} \rightarrow \mathrm{J} / \psi \omega \mathrm{K}$ going on.

## $\mathrm{M}(\mathrm{J} / \psi \phi)$ in $\gamma \gamma$ collision at Belle



## $\Upsilon(1 S) \rightarrow \gamma$ charmonium(-like)



- The produced charmonium(-like) particle has $\mathrm{C}=+1$.
- X(3872), Y(3940) are looked for as well as $\mathrm{C}=+1$ charmonium (i.e. $\chi_{c 0,1,2}$ ).
- No signal seen.
(PRD82,051504(R)(2010)




## Ds ${ }^{\left({ }^{*}\right)+}{ }^{+} s^{(*)}$ - in Initial State Radiation

Initial state radiation is suitable process to have $\mathrm{JPC}^{\mathrm{PC}}=1^{--}$particle. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{Ds} \mathrm{s}^{\left({ }^{*}+\right.} \mathrm{Ds}^{\left({ }^{( }\right)-}$cross section was measured to hunt the new state decaying into $\mathrm{Ds}^{\left({ }^{*}\right)+} \mathrm{Ds}^{(*)}$.
The $\gamma$ escapes from acceptance along beam, $\mathrm{M}_{\text {miss }} \sim 0$.




Peaks seen only at known $\psi \mathrm{s}$.
(PRD83,011101(R)(2011).


## $\gamma \gamma \rightarrow \eta \eta$

- Light exotic hadrons may appear in $\eta \eta$ mass spectrum.
- $f_{2}(1270), f_{2}{ }^{\prime}(1525)$ clearly seen.
- From angular distribution, S- and Dwave contributions were extracted.
- $f_{0}(Y)$ at $1262 \mathrm{MeV}, \mathrm{f}_{2}(\mathrm{X})$ at 1737 MeV were gotten.
- $\chi_{\mathrm{c} 0}$ and $\chi_{\mathrm{c} 2} \rightarrow \eta \eta$ seen.



## New Postdocs

- Kazuyuki Sakai (A01, KEK)
- Tackle with $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{cc}} \mathrm{K}$ total rate measurement.
- Vishal Bhardwaj (A01, Nara WU)
- Did X(3872) $\rightarrow \mathrm{J} / \psi \gamma, \psi^{\prime} \gamma$.
- Chengping Shen (D01, Nagoya)
- Did $\gamma \gamma \rightarrow \mathrm{J} / \psi \phi, \Upsilon(1 \mathrm{~S}) \rightarrow \gamma$ charmonium search



## New Computer



- $2 \times$ Xeon( 2.6 gHz QuadCore)/Node -12 Nodes.
-80TB RAID6+1
-64TB RAID6+1 has been added.
-Belle data transfer still going on. (cf. all hadronic events $\sim 80 \mathrm{~TB}$ ) -Current bandwidth is 100 Mbps .

SINET4 Nara DC to Osaka becomes 2.4Gbps from 2011 April. Preparation to utilize it is also going on.

## New organization

- A01 and Nuclear Physics Consortium (NPC) members began to have a series of meeting to discuss, exchange ideas and encourage each other about Belle Physics analysis.
"Belle New Hadron Meeting"
- As for NPC, listen Muramatsu-san's talk.
- So far 4 meetings have been held, chaired by M.Uchida(T.I.T.) and KM.


## Tcc search

by Oksu Seon (Nagoya)


- Tetraquark : explicit exotic hadron (Q̄Q̄qq) $\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s} / \mathrm{Q}=\mathrm{c}, \mathrm{b}$
(Not like "X Y Z" of QQ̄qq̄)

- Tcc:udc̄c̄
- Spin-color interaction: $C_{H} \sum_{i>j} \vec{s}_{i} \cdot \overrightarrow{s_{j}} \frac{1}{m_{i} m_{j}}$
- Binding energy w.r.t. pseudoscalar(D) and vector meson ( $D^{*}$ ) final sate: $B_{T c C}=m_{T c c}-\left(m_{D}+m_{D^{*}}\right) \sim-79.3 \mathrm{MeV}$


## Now D and D* are reconstructed



- Established way for reconstruction.
- Large number of same flavor DD(*) combination, further selection to be considered.


## $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \eta \mathrm{K}^{ \pm}$

Aiming to hunt cciss tetraquark to $\mathrm{J} / \psi \eta$.
by Tomoko Iwashita (cf. Karim Trabelsi is working on $\mathrm{B} \rightarrow \mathrm{J} / \psi \phi \mathrm{K}$.) $\eta$ is reconstructed by $\gamma \gamma$.
$\psi^{\prime} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$and $\chi_{\mathrm{c} 1(2)} \rightarrow \mathrm{J} / \psi \gamma$ are vetoed for background reduction.


Sideband data have been checked, plan to open the box first to obtain br., then let's see M(J/ $\psi \eta$ ) spectrum.

## $\mathrm{B}^{ \pm} \rightarrow \psi^{\prime} \pi^{0} \mathrm{~K}^{ \pm}$

by Miyuki Ishizuka (Nara WU)
Aiming to search for neutral partner of $Z(4430)$. Reconstruction routine has been composed.

for $-0.06 \mathrm{GeV}<\Delta \mathrm{E}<+0.04 \mathrm{GeV}$
Need to think about suppression of wrong combination.

## $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{cc}} \mathrm{K}$ total rate by Kazuyki Sakai

 (KEK)

cf. BaBar, PRL96,052002(2006) 232M BB.

- Using fully reconstructed B meson sample, looking for peaks in Kaon momentum spectrum.
- Absolute branching fraction for $B \rightarrow X_{c c} K$ is obtained by the event yield in the peak.
- $\operatorname{Br}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{X}(3872) \mathrm{K}^{ \pm}\right)$is the most interesting quantity to be gotten.


## Now fully reconstructed B sample is carefully checked



- Charged K selection criteria and continuum suppression are now under optimization.


## Summary and prospect

- During 2010, Belle brought several highlights
$-X(3872) \rightarrow J / \psi \gamma, \psi^{\prime} \gamma$.
$-J / \psi \omega, J / \psi \phi$ in $\gamma \gamma$ collisions.

- New Postdocs, New Computer
- Enjoying collaborating efforts with NPC friends.
- Several new attempts started.
- Tcc search, $\mathrm{B} \rightarrow \mathrm{J} / \psi \eta \mathrm{K}, \psi^{\prime} \pi^{0} \mathrm{~K}$, total $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{cc}} \mathrm{K}$ rate.
- And more will come!
$-X(3872) \rightarrow \chi_{c 1(2)} \gamma, \chi_{c 1} \pi^{0}$, etc. for example.

