Productions of Tetra-Quark Mesons in *B* Decays and Related K. Terasaki YITP, Kyoto U., Kanazawa U.

- §1. Introduction Tetra-Quark Mesons and Their Candidates
- §2. Tetra-Quark Mesons with Exotic Quantum Numbers
- §3. Existing Searches for Tetra-Quark Mesons
- §4. Productions of Tetra-Quark Mesons with Exotic Quantum Numbers
- **§5. Summary and Conclusion**

Appendix: 1, 2, 3, 4, 5, 6

§1. Introduction

Tetra-quark mesons :

• Flavor wavefunctions :

Jaffe, PRD <u>15</u>, 267 and 281 (1977), (K. T., PRD <u>68</u>, 011501(R) (2003))

 $\{qq\bar{q}\bar{q}\bar{q}\} = [qq][\bar{q}\bar{q}] \oplus (qq)(\bar{q}\bar{q}) \oplus \{[qq](\bar{q}\bar{q}) \oplus (qq)[\bar{q}\bar{q}]\}, \quad q = u, d, s, (\text{and } c)$

Ignored

- Two different color configurations : $\bar{\mathbf{3}}_c \times \mathbf{3}_c$ and $\mathbf{6}_c \times \bar{\mathbf{6}}_c$ Forces between two quarks: $\begin{cases} * \text{ Attractive when they are of } \bar{\mathbf{3}}_c \\ * \text{ Repulsive when they are of } \mathbf{6}_c \\ \text{Han and Nambu, PR } \underline{\mathbf{139}}, \mathbf{B}(1006 \ (1965); \mathbf{S}. \text{ Hori, PTP } \underline{\mathbf{36}}, 131 \ (1966) \\ \Rightarrow m_{\bar{\mathbf{3}}_c \times \mathbf{3}_c} < m_{\mathbf{6}_c \times \bar{\mathbf{6}}_c} \end{cases}$
- When $\overline{3}_c \times 3_c$ is taken as the lower lying state (heavy mesons) $\begin{bmatrix} qq][\bar{q}\bar{q}] & (qq)(\bar{q}\bar{q}) & \{[qq](\bar{q}\bar{q}] \oplus (qq)[\bar{q}\bar{q}]\} \\ J^P: & 0^+ & 0^+, 1^+, 2^+ & 1^+ & \pm \text{Dominant} (\ \overline{3}_c \times 3_c) \\ \text{Scalar} & (\text{Ignored}) & \text{Axial-vector} \\ 0^+, 1^+, 2^+ & 0^+ & 1^+ & \pm \text{Minor} & (\ 6_c \times \overline{6}_c) \end{bmatrix}$

Typical candidates of tetra-quark mesons

 $D_{s0}^+(2317): J^P = 0^+$

• Observed in $D_s^+ \pi^0$ but no signal in $D_s^{*+} \gamma$ in inclusive $e^+ e^-$ annihilation Babar, PRL <u>90</u>, 242001 (2003); CLEO, PRD <u>68</u>, 032002 (2003) $- \left. R(D_{s0}^+(2317))
ight|_{ ext{CLEO}} = rac{\Gamma(D_{s0}^+(2317) o D_s^{*+} \gamma)}{\Gamma(D_{s0}^+(2317) o D_s^+ \pi^0)}
ight|_{ ext{CLEO}} < 0.059$ $-\Gamma_{D_{\circ 0}(2317)} < 3.8 {
m MeV}$ **PDG08** \diamond Hierarchy of hadron interactions: Isospin conserving \gg electromagnetic \gg isospin non-conserving $(\sim O(1))$ $(\sim O(\sqrt{\alpha}))$ $(\sim O(\alpha))$ $\Rightarrow D_{s0}^+(2317)$ should be an iso-triplet charm-strange scalar state.

Narrow width \Leftarrow Small overlap of color and spin wave functions

 $\begin{array}{c|c} & (\text{Discussed in } \operatorname{Append} \\ & & \\$

Hayashigaki and K. T., PTP <u>114</u>, 1191 (2005); hep-ph/0410393

$$Br(B^0_d o D^- \check{D}^+_{s0}(2317)[D^+_s \pi^0])_{ ext{Babar}} = (1.8 \pm 0.4 \pm 0.3^{+0.6}_{-0.4}) imes 10^{-3} \ \& \ 10^{-3} \ \&$$

Note on $D_{s0}^+(2317)$:

* Rates for $\tilde{D}_{s0}^+(2317)[D_s^+\pi^0]$ and $\tilde{D}_{s0}^+(2317)[D_s^{*+}\gamma]$ productions in *B* decays are not very much different from each other.

* $\tilde{D}_{s0}^+(2317)[D_s^{*+}\gamma] = \hat{F}_0^+$ production is suppressed in e^+e^- annihilation. (Discussed in §4.)

$X(3872): J^{PC} = 1^{++}$

- $X(3872)
 ightarrow \pi^+\pi^- J/\psi$
 - Mass of X(3872) : $m_{X(3872)} = 3871.56 \pm 0.22$ MeV PDG10
 - $ext{ Width of } X(3872): \, \Gamma_{X(3872)} < 2.3 ext{ MeV}$
 - Large isospin non-conservation: $X(3872)
 ightarrow
 ho^0 J/\psi
 ightarrow \pi^+\pi^- J/\psi$

CDF II 360 pb⁻¹ $^{\circ}$ O 250 $^{\circ}$ X(3872) \rightarrow J/ $\psi \pi^{+}\pi^{-}$ $^{\circ}$ J/ $\psi \rho$ (L=0) 150 Multipole Expansions for cc: 100 $^{\circ}$ S¹/₂ X 5 $^{$

FIG. 3 (color online). The dipion mass spectrum for the X(3872) and fits to various hypotheses (see text). The fitted curve for the ${}^{1}P_{1}$ model is scaled up by a factor of 5 for better visibility.

Belle, hep-ex/0505037; CDF, PRL <u>96</u>, 102002 (2006)

PDG10

FIG. 4 (color online). A blowup of the X(3872) spectrum with $J/\psi\rho$ fits which include $\rho - \omega$ interference (95° phase) with relative amplitudes set by $\mathcal{R}_{3/2} = 1.0$. Fits for both L = 0 (lines) and 1 (shaded regions) are shown, along with their decomposition into ρ , ω , and interference terms. The inset shows L = 1 fit probabilities as a function of ϕ and R_X in 5% contours.

- No signal of $X(3872)^{\pm} \Rightarrow I = 0$

 $-~X(3872)
ightarrow \omega J/\psi
ightarrow \pi^+\pi^-\pi^0 J/\psi$

 $\begin{cases} \text{Babar, PRD } \underline{71}, \ 031501 \ (2005) \\ \begin{cases} \text{Belle, hep-ex} / 0505037 \\ \text{Babar, hep-ex} / 1005.5190 \end{cases}$

 $- \frac{\Gamma(X(3872) \to \pi^+\pi^- J/\psi)}{\Gamma(X(3872) \to \pi^+\pi^-\pi^0 J/\psi)} = 1.0 \pm 0.4 \pm 0.3 \quad \text{Belle, hep-ex/0505037}$

- Isospin symmetry in production of X(3872): Belle, hep-ex/0809.1224 $-\frac{Br(B^0 \rightarrow X(3872)K^0)}{Br(B^+ \rightarrow X(3872)K^+)}\Big|_{Belle} = 0.82 \pm 0.22 \pm 0.05$ × Contradict to the $D^0 \bar{D}^{*0}$ molecule Törnqvist, hep-ph/0308277 - Small mass difference between $X_d \sim [cd][\bar{c}\bar{d}]$ and $X_u \sim [cu][\bar{c}\bar{u}]$ $(\Delta m_X)_{Belle} = (m_{X_d} - m_{X_u})_{Belle} = 0.18 \pm 0.89 \pm 0.26 \text{ MeV}$ × Contradict to diquark-antidiquark model $(\Delta m_X) = 7 \pm 2 \text{ MeV}$ Maiani et al., PRD <u>71</u>, 014028 (2005) • Angular analysis $\Rightarrow J^P(X(3872)) = 1^+$ Belle, hep-ex/0505038
- Observation of radiative decay(s) $\Rightarrow C = +$
 - Ratio of decay rates

$$\begin{split} R(\gamma J/\psi) &\equiv \frac{Br(X(3872) \to \gamma J/\psi)}{Br(X(3872) \to \pi^+\pi^- J/\psi)} = \begin{cases} 0.14 \pm 0.05, & \text{Belle} \\ 0.33 \pm 0.12, & \text{Babar} \\ 0$$

• The means production cross section of prompt X(3872)

CDF II Collaboration, CDF note 7159 (2004); URL http://www-cdf. fnal.gov

Notes:

- The observed isospin non-conservation in the $X(3872) \rightarrow \pi^+\pi^- J/\psi$ decay can be understood by the $\omega \rho^0$ mixing (with $|g_{\omega\rho}| \simeq 3 \times 10^{-3} \text{ GeV}^2$) $\begin{cases} * \text{ well-known as the origin of isospin non-conservation in nuclear forces} \\ Miller et al., Ann. Rev. Nucl. Part. Sci. <u>56</u>, 253 (2006) \\ * enhanced in the decay, because <math>\left|m_{\omega}^2 - m_{\rho}^2\right| \ll \left|m_{\omega}^2\right|$
- Measured values of $R(\gamma J/\psi)$ favor a tetra-quark over a charmonium. (Appendix 6) K. T., PTP <u>122</u>, 1285 (2009); hep-ph/0904.3368
- The measured cross section for prompt X(3872) favors a compact object (like a tetra-quark meson) over an extended object (like a loosely bound molecule).

Bignamini et al., hep-ph/0906.0882

X(3875)

FIG. 4: Distribution of M_{D^*D} for $M_{\rm bc} > 5.27 \,{\rm GeV}$, for $D^{*0} \to D^0 \gamma$ (left) and $D^{*0} \to D^0 \pi^0$ (right) The points with error bars are data, the dotted curve is the Flatté distribution, the dashed curve is the background, the dash-dotted curve is the sum of the background and the $B \to D^*DK$ component, the dot-dot-dashed curve is the contribution from $D^0-\bar{D}^0$ reflections, and the solid curve is the total fitting function.

• $B \to \{D^0 \bar{D}^{*0}(+\bar{D}^0 D^{*0})\}K$ Mass: $m_{D^0\bar{D}^{*0}}^{\text{Babar}} = 3875.1_{-0.5}^{+0.7} \pm 0.5 \text{ MeV}$ Babar, PRD <u>77</u>,Width: $\Gamma_{D^0\bar{D}^{*0}}^{\text{Babar}} = 3.0_{-1.4}^{+1.9} \pm 0.9 \text{ MeV} (\gtrsim \Gamma_{X(3872)})$ 011102(R) (2008)

 $\Rightarrow \begin{vmatrix} X(3875) = X_{-} \sim \{ [cn](\bar{c}\bar{n}) - (cn)[\bar{c}\bar{n}] \} \\ X(3872) = X_{+} \sim \{ [cn](\bar{c}\bar{n}) + (cn)[\bar{c}\bar{n}] \} \end{vmatrix}$

- Why no peak around 3875 MeV in the $\pi \pi J/\psi$ mass distribution ?
 - Contribution of non-resonant $(\pi\pi)_{non-res}$ is much smaller than resonant contribution $(\pi\pi)_{res}$ as seen in $X(3872) \rightarrow \pi^+\pi^- J/\psi$ CDF, PRL 96, 102002 (2006)
 - $-f_0(600) = \sigma$ is extremely broad (600 1000 MeV) PDG10 \Rightarrow Not very easy to find $X(3875) \rightarrow (\pi\pi)_{\sigma} J/\psi$
 - $-X(3875) \rightarrow f_0(1370)(\text{or } f_0(1500), f_0(1710))J/\psi$ is suppressed because their thresholds are far beyond $m_{X(3875)}$
- Search for $X(3875) \rightarrow \eta J/\psi$ to confirm $X(3875) = X_{-}$

- §2. Tetra-Quark Mesons with Exotic Quantum Numbers
 - Tetra-quark interpretation of $D_{s0}^+(2317)$ and X(3872) has been favored by experiments, although their quantum numbers are not exotic.
 - \Rightarrow Observation of their partners with exotic quantum numbers is needed to establish existence of tetra-quark mesons.
 - Tetra-quark mesons with exotic quantum numbers hep-ph/1008.2992v2

$$\begin{array}{l} - \mbox{ Scalar meson with } C = -S = 1; \\ * \ I = 0; \qquad \hat{E}^0 \quad \sim \ [cs][\bar{u}\bar{d}] \\ - \mbox{ Axial-vector mesons with } C = 2; \\ * \ I = 0; \qquad H_A^+ \ \sim \ (cc)[\bar{u}\bar{d}] \\ * \ I = 1/2; \ \begin{cases} K_{ccA}^{++} \sim \ (cc)[\bar{u}\bar{s}] \\ K_{ccA}^+ \sim \ (cc)[\bar{u}\bar{s}] \\ K_{ccA}^+ \sim \ (cc)[\bar{u}\bar{s}] \\ \end{cases} \\ - \mbox{ Axial-vector mesons with } C = -S = 1; \\ * \ I = 0; \qquad E_{(cs)A}^0 \sim \ (cs)[\bar{u}\bar{d}] \\ * \ I = 1; \qquad \begin{cases} E_{(cs)A}^+ \sim \ [cs](\bar{u}\bar{d}) \\ E_{[cs]A}^- \sim \ [cs](\bar{u}\bar{d}) \\ E_{[cs]A}^- \sim \ [cs](\bar{u}\bar{u}) \\ \end{cases} \end{array}$$

 $\{ qq\bar{q}\bar{q}\bar{q} \} = [qq][\bar{q}\bar{q}] \oplus (qq)(\bar{q}\bar{q}) \oplus \{ [qq](\bar{q}\bar{q}) \oplus (qq)[\bar{q}\bar{q}] \}, \quad (q = u, d, s, \{ \text{and } c \})$ Scalar axial-vector Scalar and axial-vector tetra-quark mesons with exotic quantum numbers, their crudely estimated masses, and possible decay modes. Mass values are estimated by using a quark counting with $\Delta_{cs} = m_c - m_s \simeq 1.0 \text{ GeV}$ and $\Delta_{sn} = m_s - m_n \simeq 0.1 \text{ GeV}$.

Tetra- quark	$Mass^{(*)}$	Possible decay mode			
meson	(GeV)	2-body	Threshold	3-body	Radiative (or Weak)
					$(ar{K}\pi)ar{K}$
$\hat{E^0}$	2.32	$\langle Dar{K} angle$	2.36		$(ar{K}\pi\pi)ar{K}$
					•••
H^+_{Acc}	3.87	$\langle DD^* angle$?	3.88	$\langle DD\pi angle$?	$DD\gamma$
K_{Acc} 3.9	3.07	$\langle DD_s^{*+}\rangle?$	3.98		$DD_s\gamma$
	0.91	$\langle D^*D_s^+ angle$?		$\langle DD_s\pi angle$?	
$E_{A(sc)}$	2.07	$ar{K}D^*$	2.61	Ē D-	K De
$E_{A[sc]}$	2.91	$ar{K}^*D$	2.86	$\mathbf{K} D \pi$	$\mathbf{K} D\gamma$

(*) Input data:

 $m_{D_{s0}(2317)} = 2317.8 \pm 0.6 \,\, {
m MeV}$ and $m_{X(3872)} = 3872.2 \pm 0.8 \,\, {
m MeV}$

§3. Existing Searches for Tetra-Quark Mesons

Assigning $D_{s0}^+(2317)$ to the iso-triplet $\hat{F}_I^+ \sim [cn][\bar{s}\bar{n}]_{I=1}$ is favored.

- \Rightarrow Existence of \hat{F}_{I}^{++} , \hat{F}_{I}^{0} , \hat{F}_{0}^{+} , \hat{D}_{0} , \cdots is expected.
- Existing searches for $D_{s0}^{++}(2317) = \hat{F}_{I}^{++}$ and $D_{s0}^{0}(2317) = \hat{F}_{I}^{0}$
 - Search for \hat{F}_{I}^{0} and \hat{F}_{I}^{++}

- Search for $\hat{D}_0 \sim [cn][\bar{u}\bar{d}]$ (and the conventional $D_0^* \sim \{c\bar{n}\}$)
 - * $D\pi$ mass spectra at CDF M. Shapiro, FPCP conf., Paris, 2003 (False peaks between 2.2 GeV and 2.4 GeV)

 $\Leftarrow D_0^* \ \Leftrightarrow \hat{D}_0$

 \Rightarrow Re-analyze the spectra between 2.0 – 2.4 GeV, and find \hat{D}_0 and D_0^* behind the false peaks.

* Re-analyze the above $D\pi$ enhancement, and * Find a structure of the broad enhancement containing a narrow peak (\hat{D}) and a broad (D_0^*) (Discussed in Appendix 4)

CLEO, Phys. Rev. Lett. <u>72</u>, 1972 (1994)

FIG. 1. M^* , "corrected" invariant mass, of $(K^-\pi^+[\pi^0])K^+$ combinations. Data points are for $K^-\pi^+[\pi^0]$ combinations in the D^0 signal region; the histogram shows M^* for $(K^-\pi^+[\pi^0])K^+$ combinations where the $K^-\pi^+[\pi^0]$ combinations were chosen in D^0 sidebands.

Re-analyze more precisely the spectrum, and find D_{s0}^{*+} behind the false peak at 2.39 GeV.

$- D_s^+ \pi^{\pm}$ spectra in <u>inclusive</u> $e^+ e^-$ annihilation:

Figure 10: The $D_s^+\pi^-$ (top) and $D_s^+\pi^+$ (bottom) invariant mass distributions for candidates that satisfy the requirements discussed in the text. The solid curve is the result of a unbinned likelihood fit.

- §4. Productions of Tetra-Quark Mesons
 - Productions of tetra-quark mesons within the minimal $q\bar{q}$ pair creation
 - $-e^+e^-$ annihilation:
 - * Hierarchy of charm-strange meson production:

- Productions of \hat{F}_{I}^{++} , \hat{F}_{I}^{+} , \hat{F}_{I}^{0} and \hat{F}_{0}^{+} in *B* decays K. T., PTP <u>116</u>, 435 (2006); EPJA <u>31</u>, 676 (2007)
 - In $B_u^+ \to \overline{D}\hat{F}_I$ and $\overline{D}{}^0\hat{F}_0^+$ decays :

(a) (b) Fig.1: Production of \hat{F}_0^+ , \hat{F}_I^+ and \hat{F}_I^{++} in B_u^+ decays

 $\begin{array}{l} \text{(a) Production of } \hat{F}_{I}^{+} \text{ and } \hat{F}_{0}^{+} \text{ with } \bar{D}^{0} \\ & * \begin{cases} Br(B_{u}^{+} \to \bar{D}^{0} \tilde{D}_{s0}^{+}(2317) [D_{s}^{+} \pi^{0}])_{\text{Belle}} = (8.1^{+3.0}_{-2.7} \pm 2.4) \times 10^{-4} \\ Br(B_{u}^{+} \to \bar{D}^{0} \tilde{D}_{s0}^{+}(2317) [D_{s}^{+} \gamma])_{\text{Belle}} = (2.5^{+2.1}_{-1.6} (<7.6)) \times 10^{-4} \\ & * Br(B_{u}^{+} \to \bar{D}^{0} \tilde{D}_{s0}^{+}(2317) [D_{s}^{+} \pi^{0}])_{\text{Babar}} = (1.0 \pm 0.3 \pm 0.1^{+0.4}_{-0.2}) \times 10^{-3} \\ \text{(b) Production of } \hat{F}_{I}^{++} \text{ with } D^{-} \\ & * \begin{bmatrix} Br(B_{u}^{+} \to D^{-} \hat{F}^{++}) \sim Br(B_{u}^{+} \to \bar{D}^{0} \hat{F}_{0}^{+}) \\ \sim Br(B_{u}^{+} \to \bar{D}^{0} \hat{F}_{I}^{+}) \sim 10^{-(4-3)} \end{bmatrix} \\ \text{(same type of diagrams)} \end{array}$

where $\hat{F}_{I}^{+} = \tilde{D}_{s0}^{+}(2317)[D_{s}^{*+}\gamma]) = D_{s0}^{+}(2317)$

- In $B^0_d \to \overline{D}\hat{F}_I$ and $\overline{D}\hat{F}^+_0$ decays :

Note:

 $Br(B_d^0 \to \overline{D}^0 \hat{F}_I^0) \sim Br(B_u^+ \to D^- \hat{F}^{++}) \sim 10^{-(4-3)}$ is large enough to observe $D_{s0}^{++} = \hat{F}_I^{++}$ and $D_{s0}^0 = \hat{F}_I^0$ in *B* decays.

• In $\bar{B}^0_d \to \bar{K}\hat{F}_I$ and $K^-\hat{F}^+_0$ decays :

Fig. 3: Production of \hat{F}_I and \hat{F}_0^+ with \bar{K} in \bar{B}_d^0 decay

 $\bar{B}_{d}^{0} \to K^{-}\hat{F}_{I}^{+} \text{ decay is given by (c) and the measured rate:} Br(\bar{B}_{d}^{0} \to K^{-}D_{s0}^{+}(2317)) \cdot Br(D_{s0}^{+}(2317) \to D_{s}^{+}\pi^{0}) = (5.3^{+1.5}_{-1.3} \pm 0.7 \pm 1.4) \times 10^{-5}$ Belle

Because $Br(D_{s0}^+(2317) \to D_s^+\pi^0) \simeq 1$ from $R(D_{s0}^+(2317))_{\text{CLEO}} < 0.059$

$$\Rightarrow \boxed{Br(\bar{B}_d^0 \to K^- \hat{F}_0^+) \sim Br(\bar{B}_d^0 \to K^- \hat{F}_I^+) \sim 10^{-(5-4)}}_{\text{Suppressed because of an } s\bar{s} \text{ pair creation}} \text{ with } D_{s0}^+(2317) = \hat{F}_I^+$$

Note: $s\bar{s}$ component is much smaller than $n\bar{n}$ in the sea of nucleon.

 $y = \frac{\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle} = \begin{cases} \text{Phenomenology: Bernard, PPNP <u>60</u>, 82 (2008)} \\ \text{Lattice QCD: } \text{JLQCD, PRD <u>78</u>, 05402 (2008)} \\ 0.07 \lesssim y \lesssim 0.22 & \text{Phenomenology} \\ \lesssim 0.030(16)_{\text{stat}} \binom{+6}{-8}_{\text{extrap}} \binom{+1}{-2}_{m_s} & \text{Semi-quench} \end{cases}$

• In $\bar{B}_u^- \to K^- \hat{F}_I^0$ decay :

Fig. 4: Production of \hat{F}_{I}^{0} with K^{-} in B_{u}^{-} decay

Destructive contribution betweeb (a) and (b)

- \Rightarrow Dominant contribution to the $\overline{B}_{u}^{-} \rightarrow K^{-} \hat{F}_{I}^{0}$ decay is given by (c) which is of the same type as Fig. 3(c).
- $\Rightarrow Br(\bar{B}_u^- \rightarrow K^- \hat{F}_I^0) \sim Br(\bar{B}_d^0 \rightarrow K^- \hat{F}_I^+) \sim 10^{-(5-4)}$

(Suppressed because of an $s\bar{s}$ creation)

Productions of tetra-quark mesons with exotic quantum numbers K. T., PTP <u>125</u>, 199 (2011); hep-ph/1008.2992v3

• Productions of tetra-quark mesons with C = 2

Fig. 5: Production of axial-vector K_{Acc} and H^+_{Acc} Figs. 5(a) and (b) are of the same type as Fig. 1(a) and Fig. 2(b)

$$egin{aligned} Br(B_{c}^{+} o ar{D}^{0}K_{Acc}^{+}) &\sim Br(B_{c}^{+} o D^{-}K_{Acc}^{++}) \ &\sim |V_{cs}/V_{cd}|^{2}Br(B_{c} o ar{D}^{0}H_{Acc}^{+}) \ &\sim Br(B_{u}^{+} o ar{D}^{0}\hat{F}_{I}^{+}) &\sim Br(B_{d}^{0} o ar{D}^{-}\hat{F}_{I}^{+}) &\sim 10^{-(4-3)} \end{aligned}$$

The H_{Acc}^+ production is the CKM suppressed.

• Production of tetra-quark mesons with C = -S = 1

Fig. 6: Production of scalar \hat{E}^0 , and axial-vector $E^0_{A(cs)}$ with I = 0 and $E^0_{A[cs]}$ with I = 1

Figs. 6(a) and (b) are of the same type as Fig. 3(c).

$$\Rightarrow \begin{cases} Br(B_u^- \to D^- E_{A(cs)}^0) \sim Br(B_u^- \to D^- E_{A[cs]}^0) \sim Br(B_u^- \to D^- \hat{E}^0) \\ \sim Br(\bar{B}_d^0 \to \bar{D}^0 E_{A(cs)}^0) \sim Br(\bar{B}_d^0 \to \bar{D}^0 E_{A[cs]}^0) \sim Br(\bar{B}_d^0 \to \bar{D}^0 \hat{E}^0) \\ \sim \underline{10} \times Br(\bar{B}_d^0 \to K^- \hat{F}_I^+) \sim 10^{-(4-3)} \text{ with } \hat{F}_I^+ = D_{s0}^+(2317) \\ \uparrow \\ \text{No suppression because of no } s\bar{s} \text{ pair creation} \end{cases}$$

§5. Summary

- Evidences for existence of tetra-quark mesons :
 - Ratio of decay rates

$$\frac{\Gamma(D_{s0}^{+}(2317) \to D_{s}^{*+}\gamma)}{\Gamma(D_{s0}^{+}(2317) \to D_{s}^{+}\pi^{0})}\bigg|_{\text{CLEO}} < 0.059$$

 $\Rightarrow D_{s0}^+(2317)$ should be assigned to $\hat{F}_I^+ \sim [cn][\bar{s}\bar{n}]_{I=1}$. \Rightarrow Existence of $D_{s0}^{++}(2317) = \hat{F}_{I}^{++}$ and $D_{s0}^{++}(2317) = \hat{F}_{I}^{0}$ $\diamond \begin{cases} * \text{ Suppression of } \hat{F}_{I}^{++} \text{ and } \hat{F}_{I}^{0} \text{ production in } e^{+}e^{-} \text{ annihilation} \\ * \hat{F}_{I}^{++} \text{ and } \hat{F}_{I}^{0} \text{ can be observed in } B \text{ decays} \end{cases}$

- $X(3872)
 ightarrow \pi^+\pi^- J/\psi$ can be understood by the $\omega
 ho^0$ mixing.
- $\frac{\Gamma(X(3872) \to \gamma J/\psi)}{\Gamma(X(3872) \to \pi^+ \pi^- J/\psi)}$ favors a tetra-quark over a charmonium.
- Sizable mixing of χ'_{c1} is questionable, because no signal of $X(3872) \rightarrow \gamma \psi'$ in the measurement by Belle in contrast with Babar.
- Production of prompt X(3872) favors a tetra-quark over a molecule.
- Approximate degeneracy between X(3872) and X(3875):

$$X(3872) = X_{+} \sim \{ [cn](\bar{c}\bar{n}) + (cn)[\bar{c}\bar{n}] \}_{I=0} \\ X(3875) = X_{-} \sim \{ [cn](\bar{c}\bar{n}) - (cn)[\bar{c}\bar{n}] \}_{I=0}$$

♦ Search for $X(3875) \rightarrow \eta J/\psi$ to confirm $X(3875) = X_{-}$

- Narrow widths of (lower lying) open- and hidden-charm tetra-quark mesons (with $\bar{3}_c \times 3_c$) is understood by a small overlap of color and spin wavefunctions
- Hidden-charm scalar tetra-quark mesons :
 - <u>A peak around 3.2 GeV</u> in the $\eta \pi^0$ distribution observed by Belle \downarrow A candidate of $\hat{\delta}^c \sim [cn][\bar{c}\bar{n}]_{I=1}$ around 3.3 GeV ($\Leftarrow m_c$ at 2 GeV scale ?) (much lower than predictions by the other models)
- Open-charm scalar mesons:
 - $\begin{array}{l} \text{ Re-analyze the broad } D\pi \text{ enhancement just below the } D_2^* \text{ peak} \\ \\ \Rightarrow \left\{ \begin{array}{l} \text{Find } D_0^* \sim \{c\bar{n}\} \text{ with } \Gamma(D_0^*) \sim 50 \text{ MeV} \\ \\ \Rightarrow \text{ Reject an artificially large } \Gamma(D_{s0}^{*+} \rightarrow D_s^+ \pi^0) \\ \\ \text{Find } \hat{D}_0 \sim [cn][\bar{u}\bar{d}] \text{ with } \Gamma(\hat{D}) \lesssim 10 \text{ MeV} \end{array} \right. \end{array}$
 - Search for $D_{s0}^{*+} \sim \{c\bar{s}\}$ in the *DK* channel around 2.4 GeV region:
 * Find D_{s0}^{*+} as a peak with a ~ 40 MeV width behind the false peak

• Production rates for tetra-quark mesons with exotic quantum numbers

Conclusion:

Tetra-quark mesons with exotic quantum numbers can be observed in *B* decays, as $D_{s0}^+(2317)$ and X(3872).

Appendix

- 1. Low Lying Tetra-Quark Mesons
- 2. Narrow Width of Heavy Mesons with $\bar{\mathbf{3}}_{c} \times \mathbf{3}_{c}$
- 3. Decay Properties of Open-Charm Tetra-Quark Mesons
- 4. Conventional Charmed Scalar Mesons
- 5. Various Approaches to the *I*-spin Non-Conservation in $X(3872) \rightarrow \pi^+\pi^- J/\psi$ Decay
- 6. Isospin Non-Conservation through $\omega \rho^0$ Mixing

Appendix 1. Low Lying Tetra-Quark Mesons

• Light scalar $[qq][\bar{q}\bar{q}]$ mesons:

- S = 1S=0 $\hat{\delta}^s \sim [ns][ar{n}ar{s}]_{I=1}$ I = 1 $I = \frac{1}{2}$ $\hat{\kappa} \sim [ud][ar{n}ar{s}]$ $\hat{\sigma}^s \sim [ns][ar{n}ar{s}]_{I=0} ~~ \left|~ \hat{\sigma} \sim [ud][ar{u}ar{d}]
 ight|$ I = 0Mass (\ddagger) 0.90 1.10 0.65 (GeV) $f_0(600)$ Candidate $a_0(980), f_0(980)$ $\kappa(800)$
- (‡) MIT bag model with a large mixing between the $\bar{3}_c \times 3_c$ and $\bar{6}_c \times \bar{6}_c$

Jaffe, PRD <u>15</u>, 267 and 281 (1977)

- \heartsuit Mass hierarchy of the observed low-lying scalar mesons
- \heartsuit Approximate degeneracy between $a_0(980)$ and $f_0(980)$
- ♥ Broad widths of light scalar tetra-quark mesons because of a large mixing between the $\bar{3}_c \times 3_c$ and $\bar{6}_c \times \bar{6}_c$ states (Non-perturbative property of QCD at a scale ≤ 1 GeV)

 \Rightarrow

• Open-charm scalar $[cq][\bar{q}\bar{q}]$ mesons (with $\bar{\mathbf{3}}_c \times \mathbf{3}_c$):

K. T., PRD <u>68</u>, 011501(R) (2003)

old S	I = 1	$I=rac{1}{2}$	I = 0	Mass (‡) (GeV)	Candidate
1	$\hat{F}_{I} \sim [cn] [ar{s}ar{n}]_{I=1}$			2.32	$egin{aligned} D^+_{s0}(2317) = \ ilde{D}^+_{s0}(2317)[D^+_s\pi^0]; \end{aligned}$
Ŧ			$\hat{F}^+_0 \sim \ [cn] [ar{s}ar{n}]_{I=0}$	2.32	$ ilde{D}^+_{s0}(2317)[D^{*+}_s\gamma]$
0	$\hat{D} \sim [cn] [ar{u}ar{d}]$		2.22		
	$\hat{D}^s \sim [cs][ar{n}ar{s}]$		2.42		
-1			$\hat{E}^0 \sim \ [cs][ar{u}ar{d}]$	2.32	

(‡) Quark counting with $\begin{cases} \Delta_{sn} = m_s - m_n \simeq m_{D_s} - m_D \simeq 0.1 \text{ GeV} \\ m_{\hat{F}_I^+} = m_{D_{s0}} \simeq 2.32 \text{ GeV} \text{ (input data)} \end{cases}$

Note: \hat{E}^0 is only one charmed scalar with an exotic set of C and S.

• Hidden-charm scalar $[cq][\bar{c}\bar{q}]$ mesons (with $\bar{3}_c \times 3_c$):

Strangeness (S)	1	0			
I = 1		$\hat{\delta}^c \sim [nc] [ar{n}ar{c}]_{I=1}$			
$I=rac{1}{2}$	$\hat{\kappa}^c \sim [nc][ar{s}ar{c}]$				
I = 0			$\hat{\sigma}^{c}\sim [nc][ar{c}ar{n}]_{I=0}$	$\hat{\sigma}^{sc} {\sim} [sc] [ar{c}ar{s}]$	
Mass (GeV) (‡)	\sim 3.4	\sim 3.3	\sim 3.3	$\sim \! 3.5$	
OZI-allowed Decay	$\overline{\eta_{c}K}$	$\eta_c\pi$	$\eta_c\eta$	$\eta_c\eta$	
Threshold (GeV)	3.48	3.12	3.53	3.53	

(‡) Quark counting with $\Delta_{cs} \simeq 1 \text{ GeV}, \Delta_{sn} \simeq 0.1 \text{ GeV},$ $m_{\hat{F}_I^+} = m_{D_{s0}} = 2317.8 \pm 0.6 \text{ GeV} \text{ (Input data)}$

Notes:
$$\begin{cases} * \text{ A peak around 3.2 GeV in the } \eta \pi^{0} \text{ channel} \\ \Rightarrow \underline{\text{A candidate of } \hat{\delta}^{c}} \\ * \text{ No state with exotic quantum numbers} \end{cases} \text{Belle, PRD } \underline{80}, 032001 (2009) \end{cases}$$

• Hidden-charm axial-vector $[cq](\bar{c}\bar{q}) \oplus (cq)[\bar{c}\bar{q}]$ mesons with $\bar{3}_c \times 3_c$

S	1	0			-1
I = 1		$C^c_{a_1(b_1)}(\pm)$			
I - 1/2	$C^{ m c}_{K_1}(\overline{60}_f)$				$C^c_{ar{K}_1}(\overline{60}_f)$
1 - 1/2	$C^c_{K_1}(60_f)$				$C^c_{ar{K}_1}(60_f)$
I = 0			$C_1^c(\pm)$	$C_1^{cs}(\pm)$	
Mass (*)	~ 4.0	~	R 9 (†)	~ 4.1	~ 4.0
(GeV)	1.0				10
			$C_1^c(\pm) = X_\pm$	$C_1^{cs}(\pm) =$	
Candidate	?	?	$\int X(3872)$	$\int J/\psi \phi(4143)$?
			- X(3875)		

(*) Quark counting, (‡) Input data

- - $\begin{cases} C_1^c(+) \to J/\psi \pi \pi \pi, \, J/\psi \pi \pi \Rightarrow X(3872) \\ C_1^c(-) \to D^0 \bar{D}^{*0}, \, D^0 \bar{D}^0 \pi^0 \Rightarrow X(3875) \end{cases}$

Appendix 2. Narrow Width of Heavy Mesons with $\bar{\mathbf{3}}_{c} \times \mathbf{3}_{c}$

- Variety of color and spin configurations in heavy tetra-quark mesons
 - Open-charm scalar:

For example,

- * The above decomposition is reshuffled by a gluon exchange:
 - \cdot <u>Rare</u> in heavy mesons (at the heavy meson mass scale)
 - \Rightarrow Small overlap of color and spin wfs. between \hat{F}_{I}^{+} and $D_{s}^{+}\pi^{0}$
 - \Rightarrow <u>Narrow widths</u> of heavy tetra-quark mesons with $3_c \times \overline{3}_c$
 - \cdot <u>Often</u> in light mesons (at the light meson mass scale)
 - \Rightarrow Nearly "fall-apart" \Rightarrow Broad !

– Hidden-charm axial-vector:

* Small overlap of color and spin wavefunctions :

 $\Rightarrow \text{Narrow width of } X(3872), [X(3875)] \text{ in the tetra-quark model}$ Note: Large difference of color and spin wf. overlap between heavy and light mesons $\left(|\beta_0|^2 \sim \frac{1}{12}, \ |\beta_{01}|^2 \sim \frac{1}{12}, \ |\beta_{11}|^2 \sim \frac{1}{6}\right)$ **Appendix 3.** Decay Properties of Tetra-Quark Mesons

- To estimate decay rates:
 - $SU_{f}(4)$ and its breaking for strong vertices
 - * In the case of tetra-quark mesons,
 - $SU_{f}(4)$ relates vertices at different energy scales
 - \Rightarrow Different overlap of color and spin wfs.

(Light flavors \Leftrightarrow Heavy flavors)

- * Deviation of spatial wf. overlap from the flavor symmetry limit \Rightarrow Deviation of $f_+(0)$ from unity
- * $SU_f(3)$: $f_+^{(\pi^- K^0)}(0) = 0.961 \pm 0.008$ Leutwyler & Roos * $SU_f(4)$: $f_+^{(\bar{K}D)}(0) = 0.74 \pm 0.03$ PDG96
- - $= 0.747 \pm 0.019$

HPQCD,

hep-lat/1008.4562

$$egin{array}{c|c} rac{f_{\pm}^{(\pi D)}(0)}{f_{\pm}^{(ar{K}D)}(0)} &= 1.00 \pm 0.13 & extbf{E687} \ &= 0.90 \pm 0.08. & extbf{CLEO} \end{array}$$

• The vector meson dominance (VMD) in radiative decays

- Photon-vector meson coupling strengths

Photon-vector meson coupling strengths in GeV^2 . The sign of X_V is determined by using the quark model.

V	$X_V(k^2=0) { m in} { m GeV}^2$	$X_V(k^2=m_V^2) { m in} { m GeV}^2$
$ ho^0$	0.033 ± 0.003	0.0357 ± 0.0008
ω	0.011 ± 0.001	0.0109 ± 0.0002
ϕ	-0.018 ± 0.004	-0.0238 ± 0.0003
$oldsymbol{\psi}$	~ 0.054	0.380 ± 0.013

K. T., NC Lett. <u>31</u>, 457 (1981); NC <u>66A</u>, 475 (1981)

- Rate for isospin conserving $D_{s0}^+(2317) = \hat{F}_I^+ \rightarrow D_s^+ \pi^0$ decay
 - Flavor $SU_f(4)$ relations with corrections to its symmetry breaking:

$$\sqrt{2}\langle D_s^+|A_{\pi^0}|F_I^+
angle=\cdots=\langle \eta^s|A_{\pi^-}|\delta^{s+}
angle(SB)eta_0$$

* $(SB) \simeq 0.7 - 0.8$: deviation of spatial wavefunction overlap

from the $SU_f(4)$ symmetry limit

* Color and spin wf. overlap: $|\beta_0|^2 \sim \frac{1}{12}$

- Input data : $\Gamma(a_0(980)) \simeq \Gamma(a_0(980) \rightarrow \eta \pi) \simeq 50 - 100 \text{ MeV } \text{PDG04}$

$$\Rightarrow \boxed{\Gamma(\hat{F}_I^+) \simeq \Gamma(\hat{F}_I^+ \to D_s^+ \pi^0) \sim (3-6) \text{ MeV}} \quad \text{(Sufficiently small)}$$

A. Hayashigaki and K. T., PTP <u>114</u>, 1191 (2005); hep-ph/0410393

• Radiative and isospin non-conserving decays of D_s^{*+} and charm-strange scalars:

– Radiative decays under the VMD

Deviation from the $SU_f(4)$ symmetry limit of the spatial w.f. overlap $\sim 0.7 - 0.8$ is corrected

Decay	$\begin{array}{c} \text{Overlap} \\ (\beta_1 ^2) \end{array}$	Decay rate (keV)	Input Data
$D_s^{*+} o D_s^+ \gamma$	1	0.4 - 0.5	$egin{aligned} \Gamma(\omega o \pi^0 \gamma)_{ ext{exp}} \ &= 0.734 \pm 0.035 ext{MeV} \end{aligned}$
$D_{s0}^{*+} ightarrow D_s^{*+}\gamma$	1	15 - 20	$egin{aligned} \Gamma(\chi_{ m c0} o \psi \gamma)_{ m exp} \ &= 119 \pm 15 { m keV} \end{aligned}$
$\hat{F}_0^+ o D_s^{*+} \gamma$	1/4	2-3	$\Gamma(\phi o a_0(980)\gamma)_{ m exp}$
$\hat{F}_{I}^{+} ightarrow D_{s}^{*+}\gamma$	1/4	20 - 25	$=0.32\pm0.03~{ m keV}$

A. Hayashigaki and K. T., PTP <u>114</u>, 1191 (2005); hep-ph/0410393 **Remarks**:

* $\Gamma(D_s^{*+} \to D_s^+ \gamma)_{\text{VMD}} \sim \Gamma(D_s^{*+} \to D_s^+ \gamma)_{\text{CQM}} = 0.4 \text{ keV}$ * $\Gamma(D_{s0}^{*+} \to D_s^+ \gamma)_{\text{VMD}} \sim 10 \times \Gamma(D_{s0}^{*+} \to D_s^+ \gamma)_{\text{CQM}}$

CQM: Bardeen et al., PRD 68, 054024 (2003)

- Isospin non-conserving $D_s^+ \pi^0$ decays of charm-strange mesons:

- * Isospin non-conservation through the $\eta \pi^0$ mixing:
 - $\epsilon = 0.0105 \pm 0.0013$ Dalitz and Von Hippel, PL <u>10</u>, 153 (1964)
 - Deviation from the $SU_f(4)$ symmetry limit of the spatial wf. overlap $\sim 0.7 0.8$ is corrected

Decay	Overlap (<mark>β</mark> 0)	Decay rate (keV)	Input Data
$D_s^{*+} o D_s^+ \pi^0$	1	0.02 - 0.03	$\Gamma(ho o \pi\pi)_{ m exp} \simeq 150 { m MeV}$
$D_{s0}^{*+} ightarrow D_s^+\pi^0$	1	0.3 - 0.4	$egin{aligned} \Gamma(K_0^* o K^+ \pi^-)_{ ext{exp}} \ &= 182 \pm 24 ext{MeV} \end{aligned}$
$\hat{F}^+_0 o D^+_s \pi^0$	1/12	0.2 - 0.5	$egin{aligned} \Gamma(a_0(980) o \eta \pi)_{ ext{exp}} \ &= 50-100 ext{MeV} \end{aligned}$

A. Hayashigaki and K. T., PTP <u>114</u>, 1191 (2005); hep-ph/0410393 **Remarks:**

 $- \Gamma (D_s^{*+}
ightarrow D_s^+ \pi^0)_{
m our} \simeq 20 - 30 \; {
m eV} \simeq 3 imes \Gamma (D_s^{*+}
ightarrow D_s^+ \pi^0)_{
m BEH}$ $- \Gamma(D_{s0}^{*+}
ightarrow D_s^+ \pi^0)_{
m our} \simeq 0.3 - 0.4 \; {
m keV} \ll \Gamma(D_{s0}^{*+}
ightarrow D_s^+ \pi^0)_{
m BEH} \simeq 20 \; {
m keV}$ **BEH** (HH χ PT): Bardeen et al., PRD <u>68</u>, 054024 (2003) Ratios of decay rates:

 $R(D_s^{*+})_{
m exp}^{-1} = 0.062 \pm 0.003 \;, \;\;\; R(D_{s0}^+(2317))_{
m CLEO} < 0.059$

	VMD	Input Data
$R(D_s^{st+})^{-1}$	0.06	$\Gamma(ho o \pi\pi)_{ m exp} \simeq 150 { m MeV},$
	0.00	$\Gamma(\omega o \pi^0 \gamma)_{ m exp} = 0.734 \pm 0.035 { m keV}$
$R(\hat{F}_{I}^{+})$	$(4.5-9) imes 10^{-3}$	$\Gamma(a_0(980) ightarrow \eta \pi)_{ m exp} = 50-100 { m MeV},$
$R(\hat{F}_0^+)$	5 - 10	$\Gamma(\phi ightarrow a_0(980) \gamma)_{ m exp} = 0.32 \pm 0.03 { m keV}$
$R(D_{s0}^{st+})$	50	$\Gamma(K_0^* ightarrow K^+ \pi^-)_{ m exp} = 182 \pm 24 { m MeV},$
	90	$\Gamma(\chi_{ m c0} o \psi \gamma)_{ m exp} = 119 \pm 15 { m keV}$

Remarks:

- Our approach is well calibrated by $R(D_s^{*+})_{exp}^{-1}$.
- $R(\hat{F}_{I}^{+}) \simeq (4.5 9) \times 10^{-3}$ satisfies well $R(D_{s0}^{+}(2317))_{\text{CLEO}} < 0.059.$ $\Rightarrow D_{s0}^{+}(2317)$ should be assigned to $\hat{F}_{I}^{+} \Rightarrow D_{s0}^{0}(2317), D_{s0}^{++}(2317)$?
- $R(D_{s0}^{*+}) \simeq 50 > R(\hat{F}_0^+) \simeq 5 10 \gg 0.059 > R(D_{s0}^+(2317))_{\text{CLEO}}.$ $\Rightarrow \text{Assignment of } D_{s0}^+(2317) \text{ to an } I = 0 \text{ state } (\hat{F}_0^+ \text{ or } D_{s0}^*) \text{ is rejected}.$

$$R(D_s^{*+})^{-1} = rac{\Gamma(D_s^{*+} o D_s^+ \pi^0)}{\Gamma(D_s^{*+} o D_s^+ \gamma)}, \ R(S) = rac{\Gamma(S o D_s^{*+} \gamma)}{\Gamma(S o D_s^+ \pi^0)}, \quad (S = D_{s0}^{*+}, \, \hat{F}_0^+, \, \hat{F}_I^+ \,)$$

Comments:

- If $D_{s0}^+(2317)$ were an iso-singlet state like a ${}^{3}P_{0}$ { $c\bar{s}$ }, a chiral partner of D_{s}^{+} , a DK molecule, \cdots , then, the rate for the isospin non-conserving decay should satisfy $\Gamma(\{D_{s0}^+\}_{I=0} \to D_s^+ \pi^0) \gg \Gamma(\{D_{s0}^+\}_{I=0} \to D_s^{*+} \gamma)$ $) \gg \Gamma(\{D_{s0}\}_{I=0} \rightarrow D_{s-1})$ $\begin{cases} \sim 2 \text{ keV}, \quad \text{CQM } (m_s \simeq 500 \text{ MeV }???): \\ \text{Bardeen et al., PRD } \underline{68}, 054024 \ (2003) \\ (\sim 20 \text{ keV}, \text{ VMD} & \text{A.H. \& K.T.}) \end{cases}$ $-\Gamma(D_{s0}^{*+} \to D_s^+ \pi^0) \gtrsim 20 \text{ keV (HH}\chi \text{PT) to satisfy } R(D_{s0}^+)|_{\text{CLEO}} < 0.059$ $\Rightarrow \begin{cases} SU_f(3) \text{ implies that } \Gamma(D_0^* \to D\pi) \gtrsim 500 \text{ MeV} > \Gamma(D_0^*)_{\text{Babar}} \\ \text{HH}\chi \text{PT cannot reproduce } R(D_s^{*+})_{\text{exp}}^{-1}. \end{cases}$ $\begin{cases} Cho and Wise, PRD <u>49</u>, 6228 (1994), \\ Bardeen et al., PRD <u>68</u>, 054024 (2003) \end{cases}$
 - Dynamically generated molecules with

 $\Gamma(D_{s0}^+(2317) o D_s^+\pi^0) \gtrsim ext{several tens keV}$

- * Where the conventional D_{s0}^{*+} and D_{0}^{*} , and how broad ?
- * Basic (chiral) Lagrangian should be <u>calibrated</u> by $R(D_s^{*+})_{exp}^{-1}$.

Appendix 4. Conventional Charmed Scalar Mesons

- Current algebra $\oplus SU_f(4)$ with corrections from its symmetry breaking
- ↑ 20 - 30 % deviation of spatial wf. overlap from unity (i.e., $SU_f(4)$ symmetry limit) • Input data: $\begin{cases} m_{K_0^*} = 1412 \pm 6 \text{ MeV}, \\ \Gamma_{K_0^*} = 294 \pm 23 \text{ MeV}, \ Br(K_0^* \to K\pi) = 93 \pm 10 \ \% \end{cases}$ $rac{D_0^* \sim \{c ar{n}\}}{- ext{Mass:}} \qquad m_{D_0^*} \simeq 2.3 ext{ GeV} \qquad ext{(tentative)}$ $\Rightarrow ext{ Width: } \Gamma(D_0^*) \simeq \Gamma(D_0^* o D\pi) \sim 50 ext{ MeV} \ll \Gamma(D_0)_{ ext{Babar}}$ $\diamondsuit \left\{ \begin{array}{l} \text{Re-analyze the } D\pi \text{ mass distribution just below the } D_2^* \text{ peak} \\ \text{Find a structure containing} \left\{ \begin{array}{l} D_0^* \text{ with } \sim 50 \text{ MeV width} \\ \hat{D} \text{ with a width} \lesssim 10 \text{ MeV} \end{array} \right. \right.$ $\begin{array}{ll} \displaystyle \underline{D_{s0}^{*+} \sim \{c\bar{s}\}} \\ - \text{ Mass:} & m_{D_{s0}^{*+}} \simeq m_{D_0^*} + \Delta_{sn} \simeq 2.4 \text{ GeV} \\ \Rightarrow \text{ Width:} & \Gamma(D_{s0}^*) \simeq \Gamma(D_{s0}^* \to DK) \sim 40 \text{ MeV} \end{array}$ \diamond Search for a *DK* peak (with a width ~ 40 MeV) around 2.4 GeV K.T. and B.H. McKellar, PTP 114, 205 (2005)

Appendix 5. Various Approaches to Large *I*-Spin Non-Conservation in X(3872) Decays

- Explicit violation of Isospin conservation:
 - Molecular model: $X(3872) \sim D^0 \bar{D}^{*0} + c.c.$ $T\ddot{o}rnquist, hep-ph/0308277$ **Inconsistent** with the isospin symmetry in X(3872) productions Braaten and Kusunoki, PRD 71, 074005 (2005)
 - Diquark-antidiquark model with a large mass difference $\Delta m = (m_{X_d} - m_{X_u}) \geq 7 \pm 2 \,\, \mathrm{MeV}$

Maiani et al., PRD <u>71</u>, 014028 (2005)

Inconsistent with $(\Delta m)_{\text{Belle}} = 0.22 \pm 0.90 \pm 0.27 \text{ MeV}$

- Dynamical violation of Isospin conservation (through $D\overline{D}^*$ -loop):
 - Unitarized chiral model:

Gamermann and Oset, PRD 76, 074016 (2007)

 $-D\bar{D}^*$ molecule mixed with $\{c\bar{c}\}$: Takizawa and Takeuchi, EPJ web of Conference <u>3</u> (2010), 03026.

Problem: $\begin{cases} * & \frac{\text{Phenomenologically known } \omega - \rho^0 \text{ mixing is not considered.} \\ * & \frac{\text{Disfavored by production of prompt } X(3872) ? \end{cases}$

Appendix 6. Isospin Non-Conservation through $\omega \rho^0$ Mixing:

K.T., PTP <u>122</u>, 1285 (2009); hep-ph/0904.3368v2

- Basic assumptions
 - * Isospin conservation in the ordinary strong interactions

 \Rightarrow No problem in productions of X(3872)

* Isospin non-conservation only through $\omega \rho^0$ mixing which is wellknown as the origin of iso-spin non-conservation in nuclear forces Miller et al., Ann. Rev. Nucl. Part. Sci. <u>56</u>, 253 (2006) and reproduces the measured rate for the $\omega \to \pi \pi$ decay Three steps of $X(3872) \rightarrow \pi^+\pi^- J/\psi$ decay: $\Rightarrow \begin{cases} \text{Three steps of } X(3872) \rightarrow \pi^+\pi^- J/\psi \text{ uecay:} \\ \left(\begin{array}{c} \text{(i) Isospin conserving } X(3872) \rightarrow \omega J/\psi, \\ \text{(ii) } \omega - \rho^0 \text{ mixing } X(3872) \rightarrow \omega J/\psi \rightarrow \rho^0 J/\psi, \\ \text{(iii) } \rho^0 \rightarrow \pi^+\pi^- \text{ decay} \\ X(3872) \rightarrow \gamma J/\psi \text{ under the VMD:} \\ \left(\begin{array}{c} \text{(i) } X(3872) \rightarrow \omega J/\psi \rightarrow \gamma J/\psi, \\ \text{(ii) } X(3872) \rightarrow \omega J/\psi \rightarrow \rho^0 J/\psi \rightarrow \gamma J/\psi, \\ \text{(iii) } X(3872) \rightarrow J/\psi J/\psi \rightarrow \gamma J/\psi, \\ \text{(iii) } X(3872) \rightarrow J/\psi J/\psi \rightarrow \gamma J/\psi, \\ \text{(only if } X(3872) \text{ is a charmonium} \\ \end{array} \right)$

- Decay rates for the $\Gamma(X(3872) \to \pi^+\pi^- J/\psi)$ and $\Gamma(X(3872) \to \gamma J/\psi)$
 - (Broad) widths of ρ and $\omega \leftarrow$ Breit-Wigner form of propagaters
 - Values of parameters involved in $\Gamma(X(3872) \rightarrow \pi^+\pi^- J/\psi)$:
 - * $|g_{\rho^0\pi^+\pi^-}| \simeq 5.98$ from $\Gamma(\rho \to \pi\pi) \simeq \Gamma_{\rho} \simeq 149$ MeV
 - $egin{aligned} &* |g_{\omega
 ho^0}| = (3.4 \pm 0.5) imes 10^{-3} \ {
 m GeV}^2 \ {
 m from} \ \Gamma_\omega &= 8.49 \pm 0.08 \ {
 m MeV}, \ \ Br(\omega o \pi^+\pi^-) = 1.53^{+0.11}_{-0.13} \ \% \ &\Rightarrow \Gamma(X(3872) o \omega J/\psi o
 ho^0 J/\psi o \pi^+\pi^- J/\psi) \ {
 m is \ enhanced}, \ {
 m because} \ \left| rac{g_{\omega
 ho}}{m_\omega^2 m_
 ho^2}
 ight| \gg \left| rac{g_{\omega
 ho}}{m_\omega^2}
 ight|. \end{aligned}$

* Remaining unknown parameter : $g_{X\omega J/\psi}$

- Values of parameters involved in $\Gamma(X(3872) \rightarrow \gamma J/\psi)$:
 - * γV coupling strengths on the photon mass-shell: $\begin{cases}
 X_{\rho}(0) = 0.033 \pm 0.003 \text{ GeV}^2, \\
 X_{\omega}(0) = 0.011 \pm 0.001 \text{ GeV}^2, \\
 X_{J/\psi}(0) = 0.050 \pm 0.013 \text{ GeV}^2, \\
 \text{* Ratio of the } \psi\text{- to } \omega\text{-pole contribution} \\
 K = 2 \frac{m_{\omega}^2}{m_{\psi}^2} \frac{X_{\psi}(0)}{X_{\omega}(0)} \frac{g_{XJ/\psi J/\psi}}{g_{X\omega J/\psi}} \Rightarrow \begin{cases}
 |K| \ll 1, \text{ if } X \sim \{cn\bar{c}\bar{n}\}, \\
 |K| \gg 1, \text{ if } X \sim \{c\bar{c}\}. \\
 \text{* Remaining unknown parameter(s)} : g_{X\omega J/\psi} \text{ (and } K)
 \end{cases}$

• Ratio of decay rates, $R = \frac{\Gamma(X(3872) \rightarrow \gamma J/\psi)}{\Gamma(X(3872) \rightarrow \pi^+\pi^- J/\psi)}$ - $R_{\text{tetra}} \simeq 0.33$, (no free parameter, because of $|K| \ll 1$) - $R_{c\bar{c}} \gg 1$, (because of $|K| \gg 1$), where $K = 2\frac{m_{\omega}^2}{m_{\psi}^2}\frac{X_{\psi}(0)}{X_{\omega}(0)}\frac{g_{XJ/\psi J/\psi}}{g_{X\omega J/\psi}} \Rightarrow \begin{cases} |K| \ll 1, \text{ if } X \sim \{cn\bar{c}\bar{n}\}, \\ |K| \gg 1, \text{ if } X \sim \{c\bar{c}\} \end{cases}$ - Experimental data on the ratio: * $R_{\text{Belle}} = 0.14 \pm 0.05$ * $R_{\text{Babar}} = 0.33 \pm 0.12$ $\Rightarrow R_{c\bar{c}} \gg R_{\text{tetra}} \simeq R_{\text{Babar}} \sim R_{\text{Belle}}$

The measured ratios of R seems to favor the tetra-quark interpretation of X(3872) over the charmonium.

• Question to a sizable mixing of χ'_{c1} $\frac{Br(X(3872) \rightarrow \gamma \psi')}{Br(X(3872) \rightarrow \gamma J/\psi)} = \begin{cases} \text{No signal} : < 2.1 \ (90 \ \% \text{ CL}) & \text{Belle} \\ 3.4 \pm 1.4 & \text{Babar} \end{cases}$