Takuya Yagi (Univ.Tokyo, KEK)

Munehisa Ohtani (Kyorin Univ.) Osamu Morimatsu (KEK, Sokendai, Univ.Tokyo) Shoji Hashimoto (KEK, Sokendai)

1: Introduction

- 2: Details of calculation
- 3: Results
- 4 : Summary & Future Plan

2011年 2月 @ 理研

1. Introduction

Motivation

• Experimental progress

- Exotic hadrons Ex) X(3872), Y(3940), etc
- ≻ Z⁺(4430)
 - Belle (2007)
 - Decay : $Z^+(4430) \rightarrow \pi^+ \psi'$

likely to be $(c\overline{c})+(u\overline{d})$

- Mass : $4433 \pm 5 \, [\text{MeV/c}^2]$
- Width : 45 + 35 18 [MeV/c²]
- Quantum number $: I^{G} = 1^{+}$

Strong candidate for 4-quark state

➢ Babar found no peak (2009)

Fig : $\pi^{+}\psi'$ invariant mass distribution (Belle 2007)

Theoretical works

- Physical pictures for Z⁺(4430)
 - ① Tetraquark state
 - Tightly bound state of diquark diantiquark pairs
 - Molecular state

(1)

 \blacktriangleright Loosely bound state of D* (2010) and D₁(2420) in the S-wave

As a first step to clarify the nature of $Z^+(4430)$, we study the channels coupled to this hadoron from lattice QCD

$D_1 D^*, DD_0^*, \chi_{c1}(1P) ho, J/\psi a_1$

Recent work : the scattering lengths of D*D1 (CLQCD, 2009) not eigenstate of I^{G}

2. Details of calculation

Setup

Gauge Configuration

- Quenched Approximation
- Lattice constant : $a \approx 0.07$ [fm], $a^{-1} \approx 2810$ [MeV]
- Lattice Size : L³ x T = 24³x48, (16³x48)
- Statistics : N = 2000 (for $24^{3}x48$), 3000 (for $16^{3}x48$)

Fermion

Lüscher's formula (1): 1+1 D

▷ Spatial Size : L, Temporal Size : ∞ , Interaction range : R

b.c. : $\phi(x + nL) = \phi(x)$ *n*: integer

A) Interaction OFF:

3

 $\implies kL = 2\pi n$

B) Interaction ON : if |x| >> R/2

$$kL + 2\delta(k) = 2\pi n$$

$$L >> R \Rightarrow \delta(k) \ (L: \text{finite}) \rightarrow \delta(k) \ (L:\infty)$$

Method to calculate $\delta(k)$

Fig: Wave function in the finite box (Interaction : OFF)

Fig: Wave function in the finite box

(2) calculation of 2 particle energy "W" from 4pt correlator

$$W \equiv 2\sqrt{m^2 + k^2}$$

subtract "k" from "m" and "W" $\square \delta(k)$

Lüscher's formula (2): 3+1 D

For 3+1 dimension Lüscher(1991)

 $(\Delta + k^2) \phi(\vec{x}) = 0$: Helmholtz equation

b.c. : $\phi(\vec{x}) = \phi(\vec{x} + \vec{n}L)$ $R < |\vec{x}| < L/2$ \vec{n} : 3D integer vectors

$$k \cot \delta_0(k) = \frac{1}{\pi L} Z(\underline{1,\eta}) \qquad (\underline{1})$$
$$\eta \equiv \frac{k^2 L^2}{4\pi^2} \approx \frac{mL^2}{4\pi^2} (W-2m) \qquad \eta > 0 \quad \text{: repulsive}$$
$$\eta < 0 \quad \text{: attractive}$$

Expansion by " $a_0 / \pi L$ "Lüscher(1986)

$$W - 2m = -\frac{4\pi}{m} \frac{a_0}{L^3} \left(1 + c_1 \frac{a_0}{\pi L} + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 \right)$$

$$W - 2m = -\frac{4\pi}{m} \frac{a_0}{L^3} \left(1 + c_1 \frac{a_0}{\pi L} + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 \right)$$

$$V = x + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L} \right)^2 + \cdots \right) \left(2 + c_2 \left(\frac{a_0}{\pi L}$$

Takuya Yagi @ Wako

Repulsive

Channels coupled to Z(4430)

•Meson pairs $(I^G(J^P)=1^+(0^-))$ in s-wave

• Correlation functions for 2-particle state (ex. D1D*)

- 1 Exchange of the gluon
- 2 State mixing Ex) D_1D^* $\overline{D}_1^0D^{*+} \rightarrow \overline{D}^{*0}D_1^+$ $\overline{D}^{*0}D_1^+ \rightarrow \overline{D}_1^0D^{*+}$

■ As a approximation, we removed the charm and anti-charm quark's annihilation diagrams.

3. Results

Classfication of each channel

Extrapolation to the physical limit $(m_{\pi} = 140[MeV])$

1 For scattering stetes,

 $a_0 = c_0$ (c_0 :constant)

 $a_{0 \chi_{c1}(1P)\rho} = 1.07 \pm 0.24 \,[\text{fm}]$ $a_{0 J/\psi a_1} = 0.77 \pm 0.21 \,[\text{fm}]$

2 For bound state(?),

X-axis im^{2}

4. Summary & Future Plan

Summary

We have studied charmed meson scatterings coupled to Z(4430). $I^{G}(J^{P})=1^{+}(0^{-})$

The scattering lengths obtained show that

the interactions in these channels are all attractive.

- Charmonium-light meson pair $\overline{c}c \overline{d}u$: weak (1)
 - \rightarrow little dependence on quark mass
- Charmed meson pair $\overline{c}u \overline{d}c$: strong 2
 - \rightarrow dependence on quark mass by the state mixing from G-parity
 - \rightarrow suggests that Z(4430) is a molecular of D₁ and D*

Future Plan

- Improvement : larger lattice box, full QCD simulation, ...
- Other hadrons : $Z_1(4050), Z_2(4250)$ Tcc ($cc d\overline{u}$), ...