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Dynamical generation of Baryon resonances from Meson-
Baryon interaction

Hadron dynamics is important at the intermediate 
energies.

Many resonances have been found to get generated from 
hadron-hadron interaction* (also in meson-meson-baryon 
and three-meson systems**).

*Some Refs: J.A.Oller and E.Oset, NPA620: 438-456,1997,Kaiser EPJ.A3:307-309,1998,  L. Roca, E. Oset and J. Singh, Phys. 
Rev. D 72 (2005) 014002,  E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 585 (2004) 243,  S. Sarkar, E. Oset and M. J. 
Vicente Vacas, Nucl. Phys. A 750 (2005) 294. etc.

**Some Refs: D. Jido, Y. Kanada-Enʼyo,  PRC 78, 025212 (2008), D. Jido, Y. Kanada-Enʼyo,  PRC 78, 035203 (2008), A. 
Martínez Torres, D. Jido PRC, 82, 038202 (2010), A. Martínez Torres, D. Jido, Y. Kanada-Enʼyo,  arxiv:1102.1505, A. Martínez 
Torres, K. P. Khemchandani, E. Oset , PRC Rapid Communication 77, 042203, 2007 , K. P. Khemchandani, A. Martinez Torres, E. 
0set EJA 37 (2008),  A. Martinez Torres, K. P. Khemchandani, E. Oset PRD 78 (2008), etc.

Pseudoscalar-baryon systems: well explained in terms of 
Weinberg Tomozawa interaction + low energy theorems 



Vector meson-Baryon interaction has been studied
for example by

• E. Oset and A. Ramos (EPJA 44, 445 (2010) )  -----> WT (like) interaction  

(Based on hidden gauge symmetry {Bando. et. al. 1985}.)

I, S Theory PDG data

pole position real axis
mass width name JP status mass width

1/2, 0 — 1696 92 N(1650) 1/2− ! ! !! 1645-1670 145-185

N(1700) 3/2− ! ! ! 1650-1750 50-150

1977 + i53 1972 64 N(2080) 3/2− !! ≈ 2080 180-450

N(2090) 1/2− ! ≈ 2090 100-400

0,−1 1784 + i4 1783 9 Λ(1690) 3/2− ! ! !! 1685-1695 50-70

Λ(1800) 1/2− ! ! ! 1720-1850 200-400

1907 + i70 1900 54 Λ(2000) ?? ! ≈ 2000 73-240

2158 + i13 2158 23

1,−1 — 1830 42 Σ(1750) 1/2− ! ! ! 1730-1800 60-160

— 1987 240 Σ(1940) 3/2− ! ! ! 1900-1950 150-300

Σ(2000) 1/2− ! ≈ 2000 100-450

1/2,−2 2039 + i67 2039 64 Ξ(1950) ?? ! ! ! 1950 ± 15 60 ± 20

2083 + i31 2077 29 Ξ(2120) ?? ! ≈ 2120 25

Table 5: The properties of the 9 dynamically generated resonances and their possible PDG
counterparts.

model, due to the mechanism of pole repulsion discussed in Ref. [48].
Around 2000 MeV, where we find another N∗ resonance, there are the states N∗(2080)

and N∗(2090), with JP = 3/2− and JP = 1/2− respectively, showing a good approximate
spin degeneracy.

For the case (I, S) = (0,−1) there is in the PDG one state, the Λ(1800) with JP =
1/2−, remarkably close to the energy were we find a Λ state. The spin parter with JP =
3/2− is either absent in the PDG, or corresponds to the Λ(1690), although this implies a
large breaking of the expected degeneracy. The state obtained around 1900 MeV could
correspond to the Λ(2000) cataloged in the PDG with unknown spin and parity. On
the other hand, one does not find in the PDG a resonance to associate with the Λ state
predicted around 2150 MeV.

The case of the Σ states having (I, S) = (1,−1) is rather interesting. The sate that
we find around 1830 MeV, could be associated to the Σ(1750) with JP = 1/2−. More
interesting seems to be the case of the state obtained around 1990 MeV that could be
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Vector Meson-Baryon interaction:

Low energy theorems may not be applicable due to the heavy mass of the vector 
mesons.

No apriori reason to neglect diagrams like S-channel, U-channel, contact interaction 
from hidden gauge Lagrangian, etc.

 It is important to check if diagrams other than W-T (like) interaction contribute 
significantly.



Diagrams, we include:

t-channel exchange (Weinberg-Tomozawa (like)  interaction).

Contact interaction (Hidden gauge Lagrangian).

s- and u-channel baryon exchange
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and study strangeness zero systems to start with.



Vector meson-Baryon interaction: 

LV BB = −g
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�B̄γµ [V

µ, B]�+ �B̄γµB��V µ�+ 1

4M

�
F �B̄σµν [V
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Ref: E. Oset and A. Ramos, EPJA 44, 445 (2010) , D. Jido, A.Hosaka, J.C.Nacher, E.Oset and A.Ramos PRC 66, 025203 (2002) and 
the references given in these papers.

D = 2.4 

F = 0.82 
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Ref: E. Oset and A. Ramos, EPJA 44, 445 (2010) , D. Jido, A.Hosaka, J.C.Nacher, E.Oset and A.Ramos PRC 66, 025203 (2002) and 
the references given in these papers.

D = 2.4 

F = 0.82 D + F = 3.22 ≈ κρ
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g =
mv√
2fπ

Ref: E. Oset and A. Ramos, EPJA 44, 445 (2010) , D. Jido, A.Hosaka, J.C.Nacher, E.Oset and A.Ramos PRC 66, 025203 (2002) and 
the references given in these papers.

D = 2.4 

F = 0.82 D + F = 3.22 ≈ κρ



Vector meson-Baryon t-channel  (vector exchange) interaction: 

V µν = ∂µV ν − ∂νV µ + ig[V µ, V ν ]

Ref: E. Oset and A. Ramos, EPJA 44, 445 (2010) , D. Jido, A.Hosaka, J.C.Nacher, E.Oset and A.Ramos PRC 66, 025203 (2002) and 
the references given in these papers.
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Vector-Baryon contact interaction: 
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S- and U-channel diagrams: 

LV BB = −g

�
�B̄γµ [V

µ, B]�+ �B̄γµB��V µ�+ 1

4M

�
F �B̄σµν [V

µν , B]�+D�B̄σµν {V µν , B}�
��

V 1/2
S = 3Cs

ij

�
g2

mv + 2MB

�
VS = Cs

ij g
2

�
1

mv + 2MB

�
��2 · �σ��1 · �σ

VU = −Cu
ij g

2

�
1

mv − 2MB

�
��1 · �σ��2 · �σ

V 1/2
U = −Cu

ij

�
g2

2MB −mv

�

V 3/2
U = 2Cu

ij

�
g2

2MB −mv

�

��1 · ��2 + i�σ · ��1 × ��2

��2 · ��1 + i�σ · ��2 × ��1



B

V

B

V

B

B

V

B

V

B





F (x)(λ, x) =
λ4

λ4 + (x2 −M2
x)

2

λ =

x =

650 - 850 MeV
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T = V + VGT

Solve Bethe-Salpeter equations in coupled channel formalism:
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T = V + VGT

But rho and K* mesons are quite wide!!
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can be factorized out of the d3k′′ integral in the loops.
When the dk0 ′′ integral is performed, the value of k0 ′′ in
eq. (12) becomes the on-shell variable k0 ′ as shown ex-
plicitly in ref. [4], and thus the potential kernel, evaluated
with the on-shell values of k0 and k0 ′ for a given value
of the total energy

√
s, factorizes completely out of the

four-dimensional d4k′′ integration.
One can obtain a feeling on how good is the approx-

imation of neglecting the term q2/M2
V in the propagator

of the exchanged vector from the following discussion. As
shown in sect. 2.2 of ref. [23], the ratio of the s-wave pro-
jected ρ propagator keeping the q2/m2

ρ term to the one
with this term neglected is given by

R =
m2

ρ

4|"k|2
ln

m2
ρ + 4|"k|2

m2
ρ

, (16)

where "k is the on-shell momentum of the incoming meson.
For a given center-of-mass energy, the diversion from unity
of this ratio is larger for the scattering of vector mesons
than for pseudoscalars. Yet, in the case of ρN scattering, R
is within 10% for energies of the ρN system lying 25MeV
above or below threshold. Even then, as shown in [23],
a better agreement of the two prescriptions is possible
with a slight change in the subtraction constant of the
G-function.

A detailed discussion of the factorization procedure for
the particular case of vector mesons, after consideration
of the t- and u-channel analytical cuts can also be found
in sect. 2.2 of ref. [23].

3 Convolution due to the ρ and K∗ mass
distributions

The formalism described above would provide results ob-
tained using fixed masses for the vector mesons and no
width. The mass distributions of the ρ and K∗ mesons
are sufficiently extended to advise a more accurate cal-
culation that takes this large width into account. We fol-
low the traditional method of convoluting the G-function
with the mass distributions of the ρ or K∗ mesons, as
is customarily made [43]. One can prove that this convo-
lution is equivalent to calculating the loop function with
the dressed vector meson propagator written in terms of
its Lehmann representation, as is done in calculations of
medium effects in the scattering matrices [44]. The method
amounts to replacing the G-function by G̃ obtained as

G̃(s) =
1
N

∫ (m+2Γi)
2

(m−2Γi)2
dm̃2

(
− 1

π

)

× Im
1

m̃2 − m2 + imΓ (m̃)
G(s, m̃2, M̃2

B), (17)

with

N =
∫ (m+2Γi)

2

(m−2Γi)2
dm̃2

(
− 1

π

)
Im

1
m̃2−m2+imΓ (m̃)

(18)

being the normalization factor, and Γi the decay width of
the meson (i = ρ,K∗), which we take to be 149.4MeV
and 50.5MeV for the ρ- and K∗-meson, respectively. The
energy-dependent width Γ (m̃) for the ρ-meson, obtained
from its decay into two pions in p-wave, is given by

Γ (m̃) = Γρ
m2

ρ

m̃2

(
m̃2 − 4m2

π

m2
ρ − 4m2

π

)3/2

θ(m̃ − 2mπ). (19)

A similar expression gives the energy-dependent width of
the K∗-meson from its decay into a K-meson and a pion.

We will see that, using fixed masses for the vector
mesons, one finds bound states in the ρN and K∗N am-
plitudes, i.e. states having zero width. However, when G̃ is
used in eq. (13) and, therefore, both the ρ and K∗ vector
mesons are taken with their corresponding mass distribu-
tion, there is phase space for the decay of each of these
bound states into some of the mass components of the
vector meson and the nucleon, thereby acquiring an ap-
preciable width.

4 Search for poles

We search for poles in the scattering matrices in the second
Riemann sheet, as defined in previous works [42], basically
changing q̄l by to −q̄l in the analytical formula of the G-
function, eq. (14), for channels where Re(

√
s) is above the

threshold of the corresponding channel. When one has a
mass distribution of the ρ and K∗ mesons, and hence a
fuzzy description of the threshold for some channels, one
could take different prescriptions for going to the opti-
mal Riemann sheet that better reflects the behavior of
the amplitude in the real axis, which is where the physical
information is contained. The results are very similar in
all cases, expect when one has a resonance very close to
threshold, where the convolution can distort the shape of
the amplitude and even make the pole disappear. In view
of that, for these cases the couplings are obtained from
the amplitudes in the real axis as follows. Assuming these
amplitudes to behave as

Tij =
gigj√

s − MR + iΓ/2
, (20)

where MR is the position of the maximum of |Tii|, with
i being the channel to which the resonance couples more
strongly, and Γ its width at half-maximum, one then finds

|gi|2 =
Γ

2
√

|Tii|2 . (21)

Up to a global phase, this expression allows one to deter-
mine the value of gi, which we take to be real. The other
couplings are then derived from

gj = gi
Tij(

√
s = MR)

Tii(
√

s = MR)
. (22)

This procedure to obtain the couplings from |T |2 in the
real axis was used in [30] where it was found that changes
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having a total charge and strangeness zero. Using these contributions we
solved Bethe-Salpeter equations in the coupled channel approach and in this
section we will discuss the results of our calculations of the T -matrices.
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Figure 2: The squared T -matrices obtained by solving the Bethe-Salpeter
equation using t-channel interactions as the Born terms. Two clear peaks
can be seen these amplitudes around 1700 and 2000 MeV. The inset figure
shows the same amplitudes multiplied by arbitrary factors in the 2 GeV
energy region. The purpose of the inset figure is to show that peak in the
2GeV region in the amplitudes for the ωN and φN channels is slightly shifted
as compared to the one in the K∗Λ and K∗Σ channels.

We will first discuss the results we have obtained by using the t-channel
diagrams only. The vector meson-baryon system can have total isospin and
spin = 1/2 or 3/2. However, as it was shown in Ref. [1] and as we have already
mentioned in the previous section, the structure of the interaction obtained
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 t-channel: Isospin=1/2, spin=1/2,3/2
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Figure 3: Two pole structure of a possible N∗ with mass ∼ 2000 MeV, spin
parity 1/2− and 3/2−.

energy axis in the inset picture of Fig. 2 where we have multiplied arbitrary
factors to the ωN,φN,K∗Λ, K∗Σ diagonal T -matrices to compare the peak
positions in these amplitudes around 2 GeV. It could be argued that one out
of these two pole is too wide and may not be important in the sense that it’s
effect cannot be easily seen in real experimental data. Such a consequence
might be close to reality, however, the picture will change on addition of
more interactions and we shall see that this two pole structure will play a
vital role in understanding the results.
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3.2 Addition of more diagrams

The t-channel interaction leads to generation of two resonances with isospin
1/2, spin =1/2 and 3/2. These two resonances have a mass ∼ 1700 and ∼
2000 MeV with the latter one possessing a two pole structure, one of which
could be interpreted as a K∗Σ bound state and other could be interpreted as
a K∗Λ,φN resonance. We will now discuss the results obtained by adding
the contact term and the s- and u-channel diagrams, where the resultant
interaction has a "s · "S structure (spin-spin interaction). We thus expect to
lift the spin degeneracy of the states obtained by considering the t-channel
diagrams as the tree-level amplitude. Let us first consider the case of total
isospin 1/2 of the meson-baryon systems.

3.2.1 Isospin=1/2
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Figure 4: The squared amplitude of the process ρN → ρN as a function of
the total energy: for spin 1/2 depicted in the left figure and spin 3/2 in the
right one. The solid lines in these figures correspond to the calculations done
by taking the s-, t-, u- channel and the contact interaction explained in the
text. The dashed lines are the results obtained by considering t-channel and
the dash-dotted line show the effect of addition of the contact term.

In Fig. 4 we show the squared amplitude for the ρN diagonal element of
the matrix obtained by solving coupled channel Bethe Salpeter equations for
the spin half (left panel) and spin three-half (right panel) case. The results
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 Adding more diagrams:

λ = 650 MeV
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Figure 5: The squared amplitude of the process ωN → ωN as a function of
the total energy. The meaning of the panels and the lines continues to be
same as in Fig. 4

Fig. 5. Here we see that the contact term added to the t-channel diagrams
produces a slightly enhanced peak structure in the spin half amplitude, but
a factor three larger matrix element, in the peak region, in case of spin 3/2
which shows a pronounced peak at slightly lower energies (∼1960 MeV) and
a bump at ∼1660 MeV. In this case, further addition of the s- and u-channel
diagrams gives rise to yet another clear peak in spin 3/2 amplitude, at about
1650 MeV. Thus, our total ωN amplitude shows two clear peaks in the spin
3/2 case. Another interesting feature seen in the spin 3/2 T -matrices is an
enhancement near 2050 MeV. There is also some interference effect seen in
this amplitude around 1930 MeV where it goes almost to zero.

Fig. 6 depicts the squared amplitude for the φN channel. Once again,
for this channel too, the addition of the contact term of the same Lagrangian
which is used to obtain the t-channel interaction (containing a Yukawa type
vertex), to this same t-channel at the leading order, produces quite some
changes in the results obtained without it. The spin 1/2 φN matrix element
shows an enhancement of the strength of squared matrix element, like in the
ωN case. The spin 3/2 φN amplitude shows a more and more well defined
peak around 1950 MeV by addition of the contact term, s-, and u-channel
diagrams. In the total amplitude (solid line), one can also see a bump around
1650 MeV.
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Figure 6: The squared spin 1/2 and 3/2 φN → φN amplitude. The meaning
of the lines and the purpose of the inset figure is same as that in Fig. 4.

It remains to discuss the results for K∗Λ and K∗Σ channels. The ones
corresponding to the former channel are shown in Fig. 7. This is the only
channel which shows two peaks in the squared amplitude calculated by taking
t-channel diagrams as the basic interaction. Clearly, the lower energy peak
disappears on adding the mostly repulsive, spin 1/2 contact interaction. The
spin 3/2 case results in two more Breit-Wigner like (distinct and sharper
peaks, as shown by the dash-dotted line in the right panel of Fig. 7 ). The
strength of the squared amplitude in this case gets enhanced by about a
factor 5. Further addition of the s- and u- channels, although leaves the
spin 1/2 amplitude almost unaltered, increases the magnitude of the spin
3/2 amplitude by another factor > 3 near 1950 MeV. This hints towards a
larger coupling of the K∗Λ channel to the 3/2− state with mass close to 1950
MeV. We shall verify this in the subsequent sub-section where we discuss the
calculations of the couplings.

Finally, let us contemplate the K∗Σ coupled channel. The squared am-
plitude for this channel shows a well pronounced peak in the spin 1/2 case
at ∼ 1975 MeV ( left panel of Fig. 8 ). It can be seen that addition of the
contact term enhances the strength of the peak found in t-channel calcula-
tions (dashed line) by about an order of magnitude (dash-dotted line). The
full calculations depicted as solid lines show some reduction in the strength.
Nevertheless the strength of the spin 1/2 amplitude of the K∗Σ channel re-
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Figure 7: Same as the Figs. 4-6 but for the K∗Λ → K∗Λ reaction.

mains the largest, which indicates towards its strong coupling to the only
state found with 1/2− quantum number, in our calculations. This can be
easily understood by looking at the Table. 1 in conjunction with Eq. (15),
which shows that the only diagonal interaction which possesses an attractive
sign, for the contact interaction in ispospin 1/2, spin 1/2 case, is the K∗Σ
channel. The full spin 3/2K∗Σ amplitude, depicted as a solid line in the right
panel of Fig. 8, shows a peak at 2064 MeV and a bump around 1950 MeV.
Interestingly, the corresponding results for the K∗Λ and φN channels show a
peak at 1950 MeV, where the K∗Σ amplitude shows a weak bump. It should
be also noticed that the strength of the K∗Λ and K∗Σ amplitudes is very
similar in the clear peak region although the peaks in the two cases appear at
energies which differ by about 100 MeV. This can be understood by recalling
the presence of two poles in the t-channel calculations, one which gets gen-
erated basically by K∗Σ interaction and the other arises due to φN −K∗Λ
coupled channel dynamics. It seems that addition of more diagrams enhances
this double pole structure in such a way that its effect can be seen explicitly
in spin 3/2 amplitudes calculated on the real energy axis.

To summarize the our results in the isospin 1/2 case, we study the
strangeness zero vector meson-baryon system by taking a contact term, t-,
s-, and u-channel diagrams as leading order interactions for which the La-
grangians are obtained under the hidden gauge and chiral symmetry assump-
tions. A coupled channel solution of such a calculations made on the real
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Figure 8: Squared amplitude for the K∗Σ channel.

energy axis, leads to finding of a peak close to 1970 MeV with total spin
equal to 1/2. We do not find any structure near 1700 MeV in the spin 1/2
amplitude. In the spin 3/2 case we find a peak near 1650 MeV and probably
a state with two pole structure near 2 GeV. We shall come back to the dis-
cussion of corresponding poles found in the second Riemann sheet in a later
section.

3.2.2 Isospin = 3/2

In Fig. 9 we show the results of the calculation of the vector meson-baryon
amplitude in the isospin=3/2, spin=1/2 space where we have only two cou-
pled channels: ρN and K∗Σ. In this figure we show the results of the calcu-
lation done by considering the t-channel interaction alone which is actually
repulsive in nature. As a result, the amplitudes in this isospin are much
weaker and rather flat as compared to the corresponding isospin half results.
One can see some kinks due to opening of the channels: the thresholds of the
ρN and K∗Σ are 1709 MeV and 2088 MeV. The results for the ρN system
are shown as thin solid and dashed lines and that for the K∗Σ are shown
as thick lines. The dashed (solid) curves have been obtained by calculating
the loops with (without) the consideration of the widths of the ρ and the
K∗-mesons.

Before showing the results obtained by adding more diagrams to the t-
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Figure 9: The isospin 3/2, spin 1/2 amplitudes obtained by assuming t-
channel as the leading order interaction, are shown in this figure for the ρN
and K∗Σ channels as thin and thick lines, respectively.

channel at the leading order in isospin 3/2 case, we would like to discuss the
results obtained by carrying out the calculations assuming only the contact
term, obtained from the Lagrangian given by Eq. (6), as the Born term.
The results of such a calculation are shown in Fig. 10, where the meaning
of the lines is the same as that in Fig. 9. The results obtained in this
case are very different to the corresponding t-channel calculations since the
contact interaction is attractive in nature, in isospin 3/2 and spin 1/2 case
(see Eqs. (15) and (16) and Table. 2). As can be seen in Fig. 10, we
find two sharp peaks: one near 1700 MeV and another near 2100 MeV. The
former seems to couple strongly to the ρN channel and the latter to the K∗Σ
system. The sharp peaks in the amplitudes shown as solid lines are a result
of consideration of the two mesons as zero width particles. The amplitudes
obtained after convoluting the loops are presented as (thin and thick) dashed
lines. The small inset figure is the same as the large one but scaled down to
show the small peaks clearly. We would like to add here that although we
see two peak like structure in the amplitudes shown in Fig. 10, we do not
find the corresponding poles to be physical. For the peak near 1700 MeV,
we find a virtual ρN pole and for the peak near 2100 MeV we do not find
any clear pole in the complex plane.

Finally, let us discuss the results we obtain by adding the contact term,
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Figure 10: The results obtained in isospin 3/2, spin 1/2 configuration by
considering the contact term of Eq. (6) as the Born term.

t- and u-channel diagrams at the leading order. We would like to remark
here that in this case we have no contribution from the s-channel since in the
present formalism we assume exchange of isospin 1/2 baryons only.
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Figure 11: The squared amplitudes for isospin=3/2, spin=1/2 obtained by
taking the t-channel +contact term +u-channel interaction as the Bonn term.

It should be also mentioned that the inclusion of the u-channel at the
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Summary:

The tree-level contributions from the contact term obtained from hidden gauge 
Lagrangian and from the s- and u- channel exchange diagrams are not 
negligible. 

The degeneracy in the WT results gets lifted if the contribution from these 
different diagrams is added.  This is something which should be expected 
when two particles with spin interact.

States found and tentative correspondence to known resonances:

Isospin, Spin-parity pole positions States in PDG

1/2, 1/2- 1977 - i27 N* (2090)

1/2, 3/2- 1641 - i0 N* (1700)

1/2, 3/2- 2071 - i7 N* (2080)

3/2, 1/2- 2010 - i112 Δ(1900)
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hand, one does not find in the PDG a resonance to asso-
ciate with the Λ state predicted around 2150MeV.

The case of the Σ states having (I, S) = (1,−1)
is rather interesting. The state that we find around
1830MeV, could be associated to the Σ(1750) with JP =
1/2−. More interesting seems to be the case of the state
obtained around 1990MeV that could be related to two
PDG candidates, again nearly degenerate, the Σ(1940)
and the Σ(2000), with spin and parity JP = 3/2− and
JP = 1/2−, respectively.

Finally, for the case of the cascade resonances, (I, S) =
(1/2,−2), we find two states, one around 2040MeV and
the other one around 2080MeV. There are two cascade
states in the PDG around this energy region with spin par-
ity unknown, the Ξ(1950) and the Ξ(2120). The relatively
small widths obtained in each case and the agreement with
the experimental ones would be an extra feature to sup-
port the association of our states to these resonances. Al-
though the experimental knowledge of this sector is rel-
atively poor, a program is presently running at Jefferson
Lab to improve on this situation [52].

The agreement found in general is encouraging. One
should stress that the measurements of the masses and
widths in this energy region are not easy, as one can guess
from the dispersion of the data obtained in different exper-
iments. The fact that some of the states predicted (essen-
tially the spin partners) are not found in the PDG, should
not be seen as a negative result of the theory, but as a mo-
tivation for the search of new resonances. The theory tells
us the origin of these states, as coming from the vector
baryon interaction. This gives us a new information and,
although the larger part of the width may come from pseu-
doscalar baryon decay, it is in the vector baryon channels
that experimental efforts should be made to eventually
find these states and confirm their vector-baryon nature.
The devoted search of Ξ resonances at Jefferson Lab [52,
53] should be most welcome in this context.

7 Conclusions

We have studied the interaction of mesons in the vector
octet of the ρ with baryons of the octet of the proton
within the hidden gauge formalism of vector mesons, using
a unitary framework in coupled channels.

We observe a rich structure in the vector-baryon scat-
tering amplitudes which is associated to the presence of
poles in the complex plane. This structure is clearly visible
in the real axis as neat peaks of |T |2 in different channels.
We could associate many of the states predicted by the
theory to known states in the PDG, thus providing a very
different explanation for the nature of these states than
the one given by quark models as simple 3q states. One
of the particular predictions of the theory is that, within
the approximations done, one obtains degenerate pairs of
particles in JP = 1/2−, 3/2−. This behavior seems well re-
produced by many of the existing data, but in some cases
the spin partners do not show up in the PDG. The rea-
sonable results produced by the hidden gauge approach

in this case, as well as in other cases [22,23] should give
a stimulus to search experimentally for the missing spin
partners of the already observed states, as well as possible
new ones.
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Appendix A. Coefficients of the s-wave tree
level amplitudes

This appendix (tables 6–14) gives the coefficients CIS
ij of

the s-wave tree level vector-baryon amplitudes of eq. (12)
for the various IS sectors studied in this work.
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I=1/2

Ccontact
ij ρN ωN φN K∗Λ K∗Σ

ρN (D+F) 0 0
(D + 3F )

4
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(F −D)

4

ωN 0 0
−(D + 3F )
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Table 1: Ccontact
ij coefficients of the potentials obtained from the contact

interaction in the isospin 1/2 base.
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Ccontact
ij ρN K∗Σ

ρN −
(D + F )

2

(D − F )

2

K∗Σ −
(D + F )

2

Table 2: Ccontact
ij coefficients of the potentials obtained from the contact

interaction in the isospin 3/2 base.

The calculation of the s- and u-channel interactions has been done by
using the Lagrangian given by Eq.(5) for both the meson-baryon-baryon
vertices involved. We obtain the following forms of the Born term in the
non-relativistic approximations

V u
ij = Cu

ij

(

−
g2

m− 2M

)

"ε1 · "σ "ε2 · "σ (17)

V s
ij = Cs

ij

(

g2

m+ 2M

)

"ε2 · "σ "ε1 · "σ, (18)

which on projecting on to the spin space give (see the Appendix for details),
for total spin=1/2

V u
ij = −Cu

ij

(

g2

2M −m

)

(19)

V s
ij = 3Cs

ij

(

g2

m+ 2M

)

(20)

and for total spin =3/2

V u
ij = 2Cu

ij

(

g2

2M −m

)

(21)

V s
ij = 0. (22)
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Cu
ij ρN ωN φN K∗Λ K∗Σ
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Table 4: Cu
ij coefficients for the potentials obtained from the U-channel in the isospin 1/2 base, where the

potential has a general form V u
ij = Cu

ij

(

− g2

m−2M

)

$ε1 · $σ$ε2 · $σ.
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U = −Cu

ij
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V 3/2
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ij
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�

I=1/2

u-channel:

In the following we give all the matrix elements obtained in the particle
base from the u-channel exchange explicitly and in Tables. 3 and 4 we give
the Cu

ij coefficients projected on the isospin 3/2 and 1/2 base, respectively.

Cu
ij ρN K∗Σ

ρN
[(D + F )m+ 2M ]2

8M2

1

8M2

{

−Dm

3
[(D + 3F )m+ 6M ]

+ [(F −D)m+ 2M ] [Fm+ 2M ]}

K∗Σ
((D + F )m+ 2M)2

8M2

Table 3: Cu
ij coefficients for the potentials obtained from the U-channel

in the isospin 3/2 base, where the potential has a general form V u
ij =

Cu
ij

(

− g2

m−2M

)

"ε1 · "σ"ε2 · "σ.
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I=3/2



Cs
ij ρN ωN K∗Λ K∗Σ

ρN
3 [(D + F )m− 2M ]2

16M2

3
√
3 [(D + F )m− 2M ]

8M

((D + F )m− 2M) [(D + 3F )m− 6M ]

16M2
−

3

16M2
[(D − F )m+ 2M ] ∗

[(D + F )m− 2M ]

ωN
9

4

√
3((D + 3F )m− 6M)

8M
−
3
√
3((D − F )m+ 2M)

8M

K∗Λ
((D + 3F )m− 6M)2

48M2
−
((D + 3F )m− 6M)

16M2
∗

((D-F)m+2M)

K∗Σ
3((D − F )m+ 2M)2

16M2

Table 5: Cs
ij coefficients of the potentials obtained from the s-channel which have the general form V s

ij =

Cs
ij

(

g2

m+2M

)

#ε2 · #σ#ε1 · #σ.
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s-channel: V 1/2
S = 3Cs

ij

�
g2

mv + 2MB

�

I=1/2


