DYNAMICALLY GENERARTED RESONANCES IN THE VECTOR MESON- BARYON SYSTEMS

K. P. Khemchandani

(Reserach Center for Nuclear Physics, Osaka, Japan)

in collaboration with

A.Hosaka, H. Kaneko,

(Reserach Center for Nuclear Physics, Osaka, Japan)

and

H. Nagahiro

(Nara women's university, Japan)

"New hadrons" workshop, Riken, Japan.

March 1, 2011

Dynamical generation of Baryon resonances from Meson-Baryon interaction

- Hadron dynamics is important at the intermediate energies.
- Many resonances have been found to get generated from hadron-hadron interaction* (also in meson-meson-baryon and three-meson systems**).

*Some Refs: J.A.Oller and E.Oset, NPA620: 438-456,1997,Kaiser EPJ.A3:307-309,1998, L. Roca, E. Oset and J. Singh, Phys. Rev. D 72 (2005) 014002, E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 585 (2004) 243, S. Sarkar, E. Oset and M. J. Vicente Vacas, Nucl. Phys. A 750 (2005) 294. etc.

** Some Refs: D. Jido, Y. Kanada-En'yo, PRC 78, 025212 (2008), D. Jido, Y. Kanada-En'yo, PRC 78, 035203 (2008), A. Martínez Torres, D. Jido PRC, 82, 038202 (2010), A. Martínez Torres, D. Jido, Y. Kanada-En'yo, arxiv:1102.1505, A. Martínez Torres, K. P. Khemchandani, E. Oset, PRC Rapid Communication 77, 042203, 2007, K. P. Khemchandani, A. Martinez Torres, E. Oset EJA 37 (2008), A. Martinez Torres, K. P. Khemchandani, E. Oset PRD 78 (2008), etc.

 Pseudoscalar-baryon systems: well explained in terms of Weinberg Tomozawa interaction + low energy theorems

Vector meson-Baryon interaction has been studied for example by

(Based on hidden gauge symmetry {Bando. et. al. 1985}.)

• E. Oset and A. Ramos (EPJA 44, 445 (2010)) ----> WT (like) interaction

I, S	The	eory		PDG data				
	pole position	real mass	axis width	name	J^P	status	mass	width
1/2, 0		1696	92	N(1650)	$1/2^{-}$	* * **	1645-1670	145-185
				N(1700)	$3/2^{-}$	***	1650-1750	50-150
	1977 + i53	1972	64	N(2080)	$3/2^{-}$	**	≈ 2080	180-450
				N(2090)	$1/2^{-}$	*	≈ 2090	100-400
0, -1	1784 + i4	1783	9	$\Lambda(1690)$	$3/2^{-}$	* * **	1685-1695	50-70
				$\Lambda(1800)$	$1/2^{-}$	***	1720-1850	200-400
	1907 + i70	1900	54	$\Lambda(2000)$	$?^?$	*	≈ 2000	73-240
	2158 + i13	2158	23	_				
1, -1	-	1830	42	$\Sigma(1750)$	$1/2^{-}$	***	1730-1800	60-160
	-	1987	240	$\Sigma(1940)$	$3/2^{-}$	***	1900-1950	150-300
				$\Sigma(2000)$	$1/2^{-}$	*	≈ 2000	100-450
1/2, -2	2039 + i67	2039	64	$\Xi(1950)$??	***	1950 ± 15	60 ± 20
	2083 + i31	2077	29	Ξ(2120)	??	*	≈ 2120	25

Vector meson-Baryon interaction has been studied for example by

(Based on hidden gauge symmetry {Bando. et. al. 1985}.)

• E. Oset and A. Ramos (EPJA 44, 445 (2010)) -----> WT (like) interaction

I, S	The	eory		PDG data				
	pole position	real mass	axis width	name	J^P	status	mass	width
1/2, 0		1696	92	N(1650)	$1/2^{-}$	* * **	1645-1670	145-185
				N(1700)	$3/2^{-}$	***	1650-1750	50-150
	1977 + i53	1972	64	N(2080)	$3/2^{-}$	**	≈ 2080	180-450
				N(2090)	$1/2^{-}$	*	≈ 2090	100-400
0, -1	1784 + i4	1783	9	$\Lambda(1690)$	$3/2^{-}$	* * **	1685-1695	50-70
				$\Lambda(1800)$	$1/2^{-}$	***	1720-1850	200-400
	1907 + i70	1900	54	$\Lambda(2000)$	$?^?$	*	≈ 2000	73-240
	2158 + i13	2158	23					
1, -1	-	1830	42	$\Sigma(1750)$	$1/2^{-}$	***	1730-1800	60-160
	_	1987	240	$\Sigma(1940)$	$3/2^{-}$	***	1900-1950	150-300
				$\Sigma(2000)$	$1/2^{-}$	*	≈ 2000	100-450
1/2, -2	2039 + i67	2039	64	$\Xi(1950)$??	***	1950 ± 15	60 ± 20
and the second s	2083 + i31	2077	29	$\Xi(2120)$??	*	≈ 2120	25

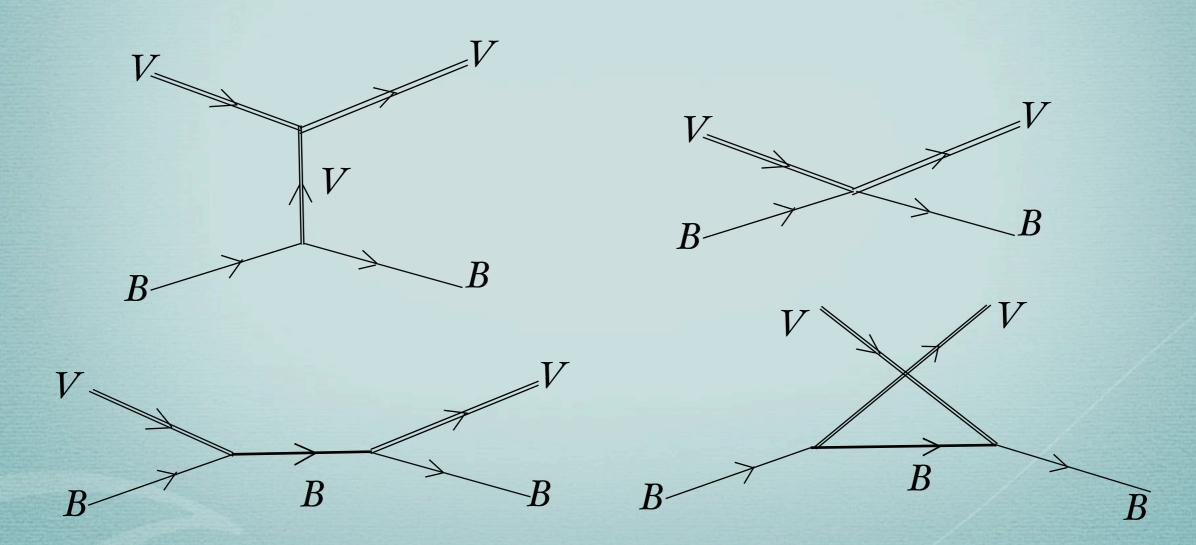
Vector meson-Baryon interaction has been studied for example by

(Based on hidden gauge symmetry {Bando. et. al. 1985}.)

• E. Oset and A. Ramos (EPJA 44, 445 (2010)) ----> WT (like) interaction

I, S	The	Theory				PDG d	ata			
	pole position	real mass	axis width	name	J^P	status	mass	width		
1/2, 0		1696	92	N(1650)	$1/2^{-}$	* * **	1645-1670	145-185		
				N(1700)	$3/2^{-}$	***	1650-1750	50-150		
	1977 + i53	1972	64	N(2080)	$3/2^{-}$	**	≈ 2080	180-450		
				N(2090)	$1/2^{-}$	*	≈ 2090	100-400		Spin
0, -1	1784 + i4	1783	9	$\Lambda(1690)$	$3/2^{-}$	* * **	1685-1695	50-70	,	degenerate
				$\Lambda(1800)$	$1/2^{-}$	***	1720-1850	200-400		
	1907 + i70	1900	54	$\Lambda(2000)$??	*	≈ 2000	73-240		
	2158 + i13	2158	23							
1, -1	_	1830	42	$\Sigma(1750)$	$1/2^{-}$	***	1730-1800	60-160		
	_	1987	240	$\Sigma(1940)$	$3/2^{-}$	***	1900-1950	150-300		
				$\Sigma(2000)$	$1/2^{-}$	*	≈ 2000	100-450		
1/2, -2	2039 + i67	2039	64	$\Xi(1950)$??	***	1950 ± 15	60 ± 20		
	2083 + i31	2077	29	Ξ(2120)	??	*	≈ 2120	25		

Vector Meson-Baryon interaction:


Low energy theorems may not be applicable due to the heavy mass of the vector mesons.

 No apriori reason to neglect diagrams like S-channel, U-channel, contact interaction from hidden gauge Lagrangian, etc.

It is important to check if diagrams other than W-T (*like*) interaction contribute significantly.

Diagrams, we include:

- * t-channel exchange (Weinberg-Tomozawa (like) interaction).
- Contact interaction (Hidden gauge Lagrangian).
- s- and u-channel baryon exchange

and study strangeness zero systems to start with.

Vector meson-Baryon interaction:

Ref: E. Oset and A. Ramos, EPJA 44, 445 (2010), D. Jido, A.Hosaka, J.C.Nacher, E.Oset and A.Ramos PRC 66, 025203 (2002) and the references given in these papers.

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$\mathsf{D} = 2.4$$

$$\mathsf{F} = 0.82$$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$

$$V = \begin{pmatrix} \frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\ \frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{K^{*0}}{\sqrt{2}} \\ \frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{*0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & \frac{-2\Lambda}{\sqrt{6}} \end{pmatrix}$$

Vector meson-Baryon interaction:

Ref: E. Oset and A. Ramos, EPJA 44, 445 (2010), D. Jido, A.Hosaka, J.C.Nacher, E.Oset and A.Ramos PRC 66, 025203 (2002) and the references given in these papers.

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$D = 2.4$$

$$F = 0.82$$

$$D + F = 3.22 \approx \kappa_{\rho}$$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$

$$V = \begin{pmatrix} \frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\ \frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{K^{*0}}{\sqrt{2}} \\ \frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{*0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \frac{\Sigma^{-}}{2} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

Vector meson-Baryon interaction:

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$\begin{array}{c} \mathsf{D} = 2.4 \\ \mathsf{F} = 0.82 \end{array} \xrightarrow{} \mathsf{D} + \mathsf{F} = 3.22 \approx \kappa_{\rho} \qquad g = \frac{m_v}{\sqrt{2}f_{\pi}} \end{array}$$

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$

$$V = \begin{pmatrix} \frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\ \frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{K^{*0}}{\sqrt{2}} \\ \frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{*0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & \frac{-2\Lambda}{\sqrt{6}} \end{pmatrix}$$

Vector meson-Baryon t-channel (vector exchange) interaction:

$$\mathcal{L}_{VB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$

$$\mathcal{L}_{3V} = -\frac{1}{2} \langle V^{\mu\nu}, V_{\mu\nu} \rangle$$

$$V_t = -C_{ij}^t \frac{1}{4f_\pi^2} (k_1^0 + k_2^0) \vec{\epsilon_1} \cdot \vec{\epsilon_2}$$

Vector meson-Baryon t-channel (vector exchange) interaction:

$$\mathcal{L}_{VB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$V^{\mu\nu} = \underbrace{\partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu}}_{(\mu\nu)} + ig[V^{\mu}, V^{\nu}]$$

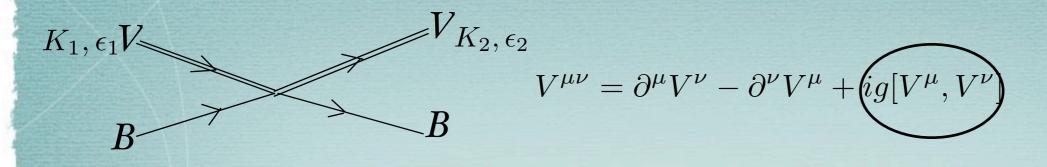
$$\mathcal{L}_{3V} = -\frac{1}{2} \langle V^{\mu\nu}, V_{\mu\nu} \rangle$$

$$V_t = -C_{ij}^t \frac{1}{4f_\pi^2} (k_1^0 + k_2^0) \vec{\epsilon_1} \cdot \vec{\epsilon_2}$$

Vector meson-Baryon t-channel (vector exchange) interaction:

$$\mathcal{L}_{VB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$V^{\mu\nu} = O^{\mu}V^{\nu} - O^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$


$$\mathcal{L}_{3V} = -\frac{1}{2} \langle V^{\mu\nu}, V_{\mu\nu} \rangle$$

$$V_t = -C_{ij}^t \frac{1}{4f_\pi^2} (k_1^0 + k_2^0) \vec{\epsilon_1} \cdot \vec{\epsilon_2} \sim -C_{ij}^t \frac{2m}{4f_\pi^2} = -C_{ij}^t \frac{m}{2f_\pi^2}$$

 V_{K_2,ϵ_2} $K_1, \epsilon_1 V$ R

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$

 V_{K_2,ϵ_2} $K_1, \epsilon_1 V$ $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu})$

$$K_{1}, \epsilon_{1}V$$

$$V_{K_{2}, \epsilon_{2}}$$

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$

$$B$$

$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$

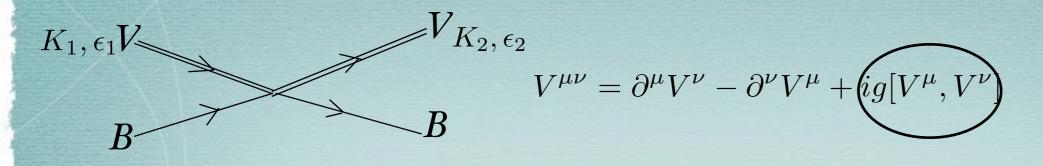
$$K_{1}, \epsilon_{1}V$$

$$V_{K_{2}, \epsilon_{2}}$$

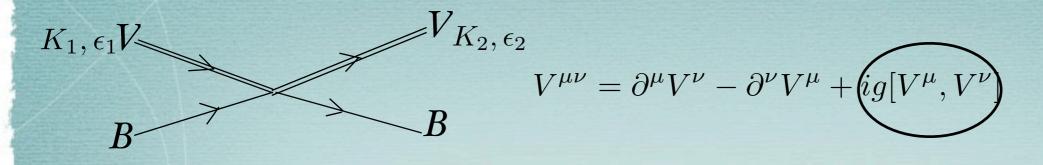
$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$

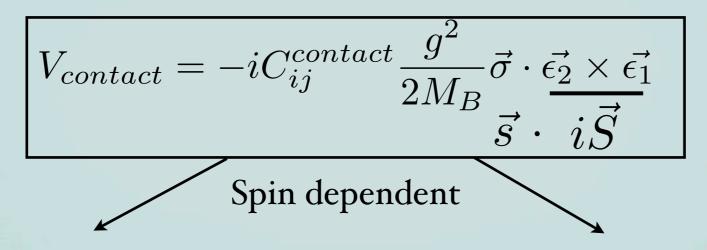
$$B$$

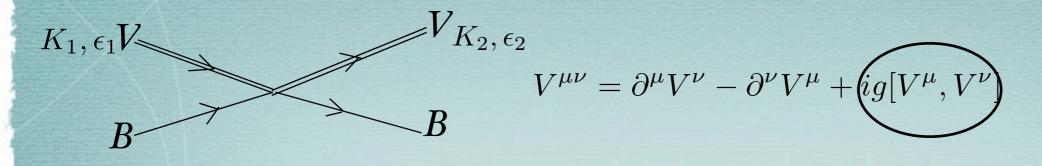
$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$

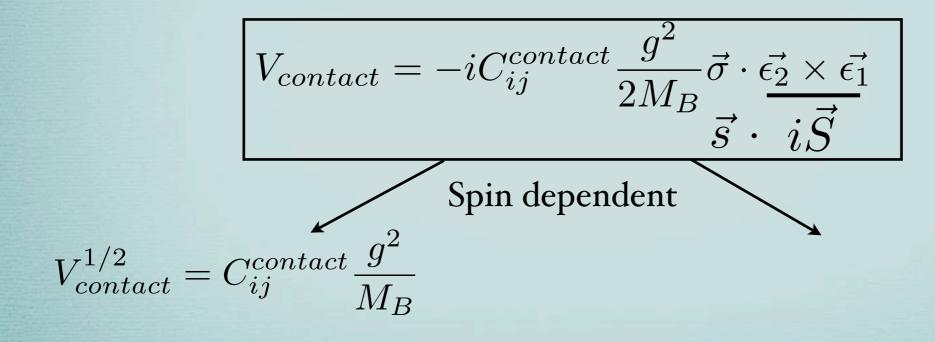

$$K_{1}, \epsilon_{1}V$$

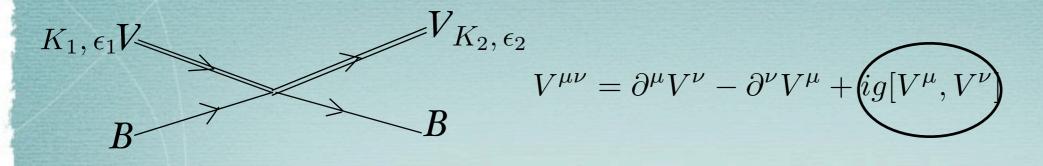
$$V_{K_{2}, \epsilon_{2}}$$

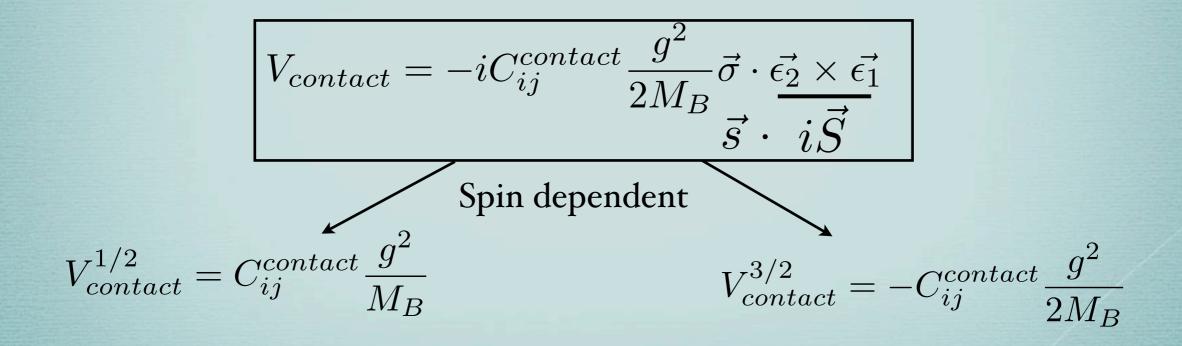

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$

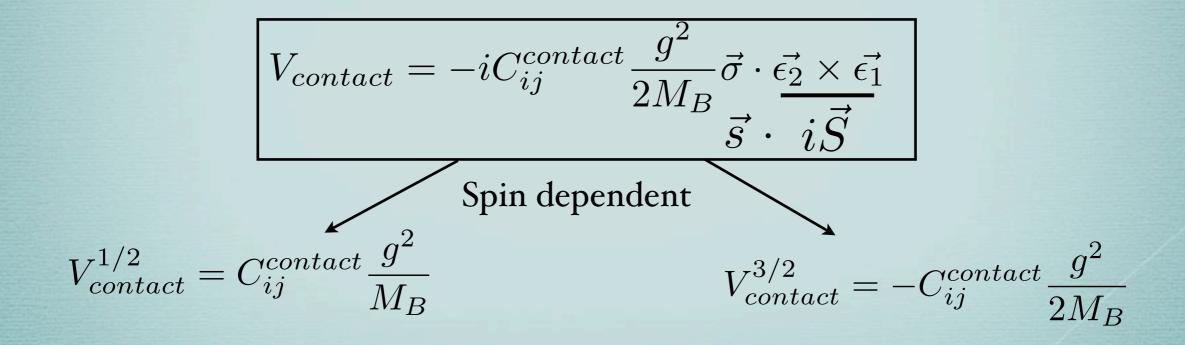

$$B$$


$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$
$$i\vec{S}$$



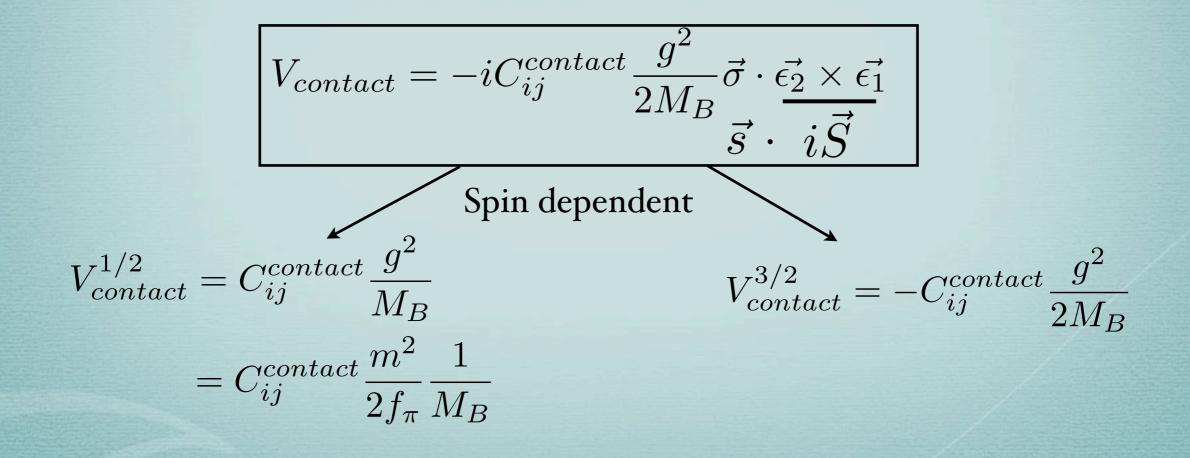

$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$
$$\vec{s} \cdot \vec{iS}$$





$$K_{1},\epsilon_{1}V$$

$$V_{K_{2},\epsilon_{2}}$$


$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + (ig[V^{\mu},V^{\nu}) \quad g = \frac{m_{v}}{\sqrt{2}f_{\pi}}$$

$$K_{1},\epsilon_{1}V$$

$$V_{K_{2},\epsilon_{2}}$$

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + (ig[V^{\mu},V^{\nu}) \quad g = \frac{m_{v}}{\sqrt{2}f_{\pi}}$$

$$K_{1},\epsilon_{1}V$$

$$V_{K_{2},\epsilon_{2}}$$

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + (ig[V^{\mu},V^{\nu}) \quad g = \frac{m_{v}}{\sqrt{2}f_{\pi}}$$

$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$

$$\vec{s} \cdot \vec{i}\vec{S}$$
Spin dependent
$$V_{contact}^{1/2} = C_{ij}^{contact} \frac{g^2}{M_B}$$

$$V_{contact}^{3/2} = -C_{ij}^{contact} \frac{g^2}{2M_B}$$

$$= C_{ij}^{contact} \frac{m^2}{2f_{\pi}} \frac{1}{M_B}$$

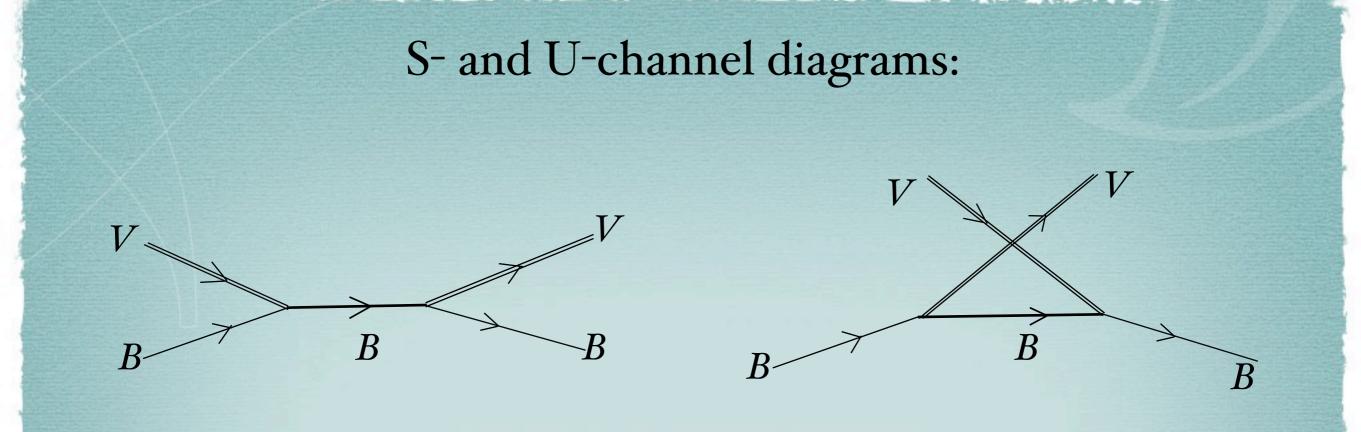
$$\sim C_{ij}^{contact} \frac{m}{2f_{\pi}^2}$$

$$K_{1},\epsilon_{1}V$$

$$V_{K_{2},\epsilon_{2}}$$

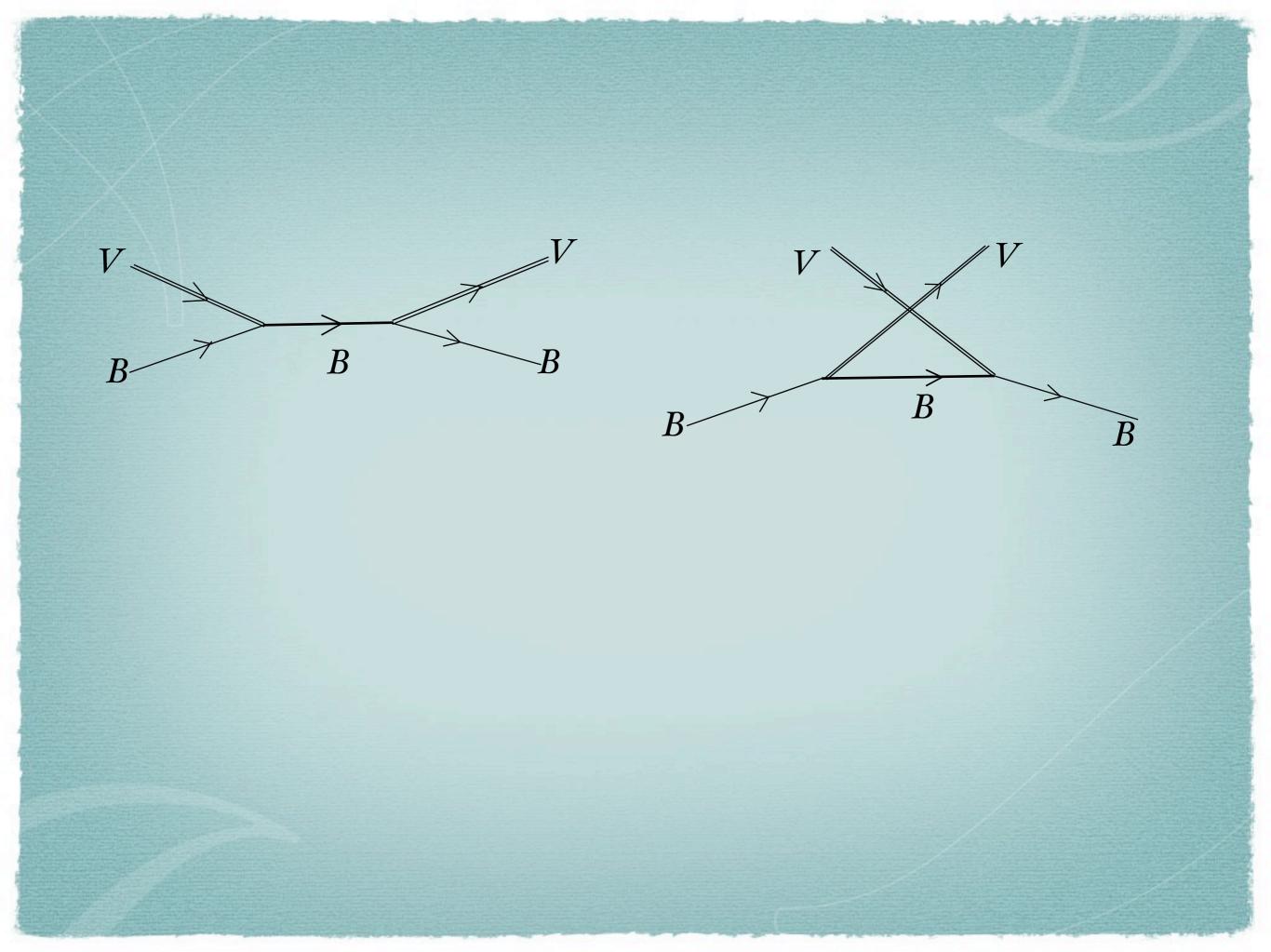
$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + (ig[V^{\mu},V^{\nu}) \quad g = \frac{m_{v}}{\sqrt{2}f_{\pi}}$$

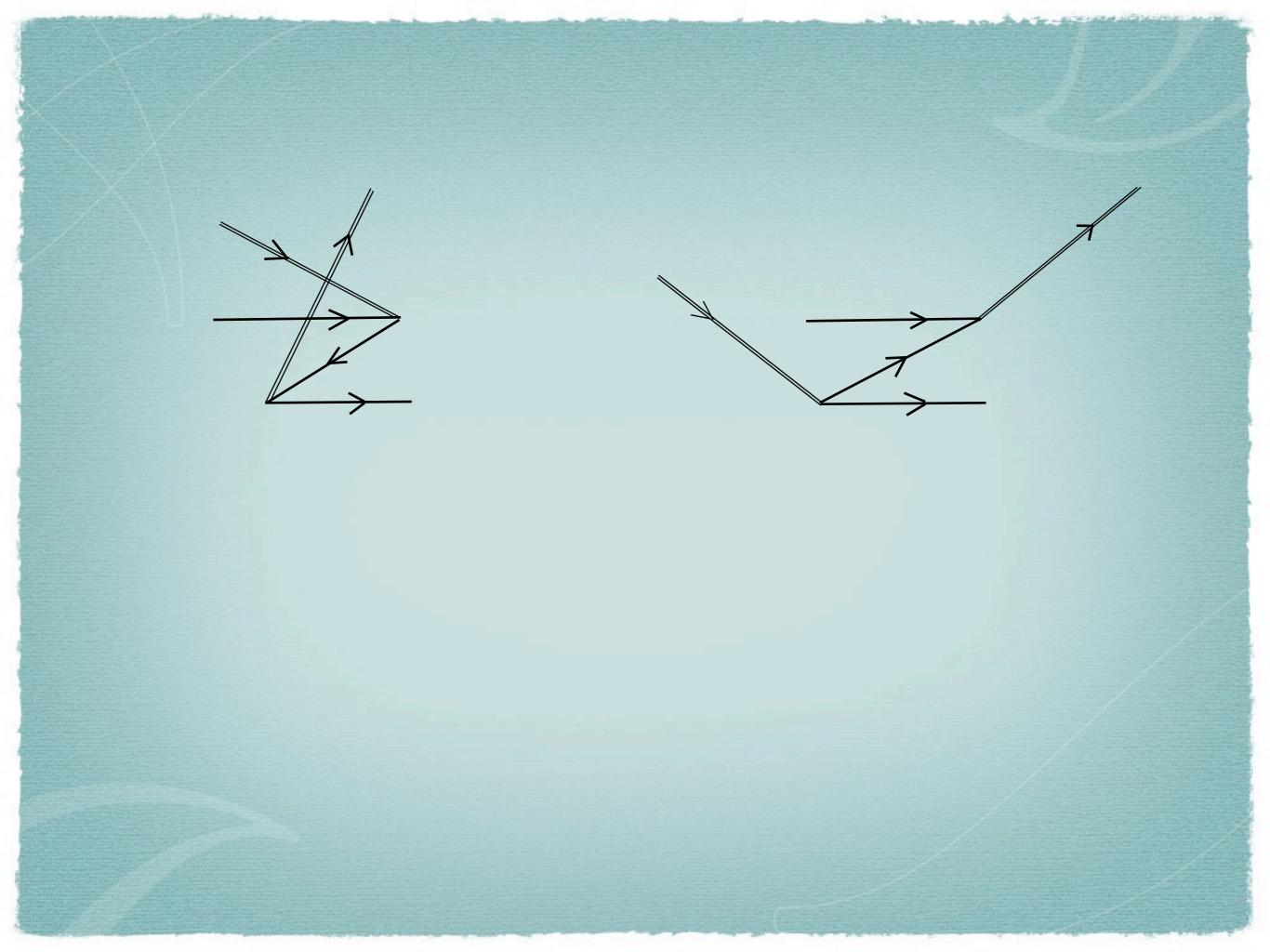
$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$

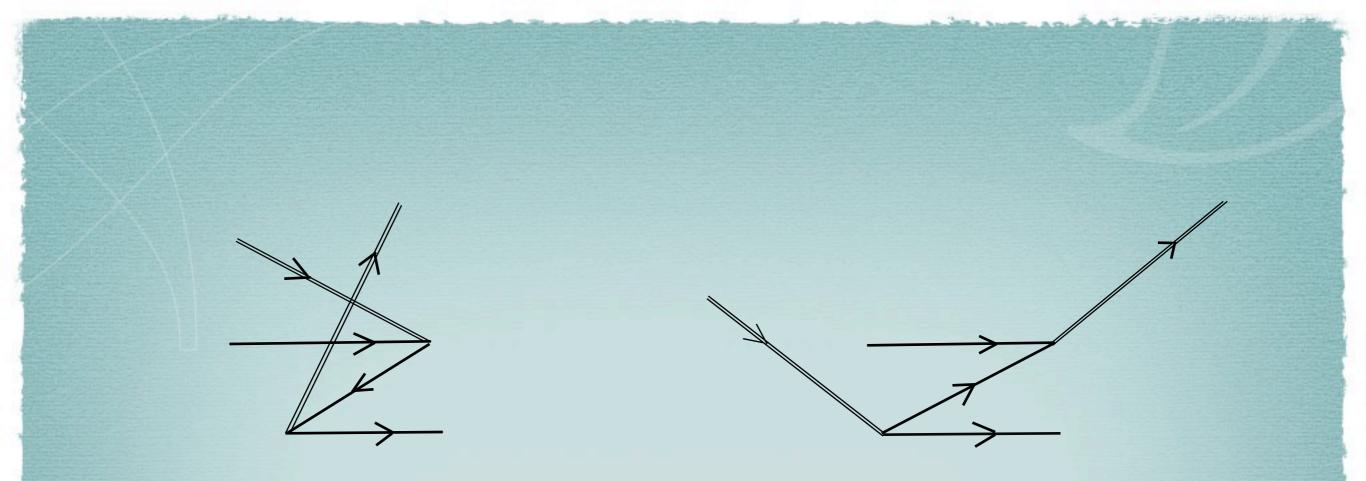

$$\vec{s} \cdot \vec{iS}$$
Spin dependent
$$V_{contact}^{1/2} = C_{ij}^{contact} \frac{g^2}{M_B}$$

$$V_{contact}^{3/2} = -C_{ij}^{contact} \frac{g^2}{2M_B}$$

$$= C_{ij}^{contact} \frac{m^2}{2f_{\pi}} \frac{1}{M_B}$$


$$\sim -C_{ij}^{contact} \frac{m}{4f\pi^2}$$


$$\sim C_{ij}^{contact} \frac{m}{2f_{\pi}^2}$$



$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$V_{S} = C_{ij}^{s} g^{2} \left(\frac{1}{m_{v} + 2M_{B}} \right) \underbrace{\vec{\epsilon_{2}} \cdot \vec{\sigma} \vec{\epsilon_{1}} \cdot \vec{\sigma}}_{\vec{\epsilon_{2}} \cdot \vec{\epsilon_{1}} + i \vec{\sigma} \cdot \vec{\epsilon_{2}} \times \vec{\epsilon_{1}}}_{\vec{\epsilon_{2}} \cdot \vec{\epsilon_{1}} + i \vec{\sigma} \cdot \vec{\epsilon_{2}} \times \vec{\epsilon_{1}}} V_{S}^{1/2} = 3C_{ij}^{s} \left(\frac{g^{2}}{m_{v} + 2M_{B}} \right)$$
$$V_{U} = -C_{ij}^{u} g^{2} \left(\frac{1}{m_{v} - 2M_{B}} \right) \underbrace{\vec{\epsilon_{1}} \cdot \vec{\sigma} \vec{\epsilon_{2}} \cdot \vec{\sigma}}_{\vec{\epsilon_{1}} \cdot \vec{\epsilon_{2}} + i \vec{\sigma} \cdot \vec{\epsilon_{1}} \times \vec{\epsilon_{2}}} V_{U}^{1/2} = -C_{ij}^{u} \left(\frac{g^{2}}{2M_{B} - m_{v}} \right)$$
$$V_{U}^{3/2} = 2C_{ij}^{u} \left(\frac{g^{2}}{2M_{B} - m_{v}} \right)$$

$$F(x)(\lambda, x) = \frac{\lambda^4}{\lambda^4 + (x^2 - M_x^2)^2}$$

 $\lambda = 650 - 850 \,\mathrm{MeV}$ $x = \mathrm{s,u}$ Solve Bethe-Salpeter equations in coupled channel formalism: T = V + VGT

$$V = V_t + V_{contact} + V_u + V_s$$

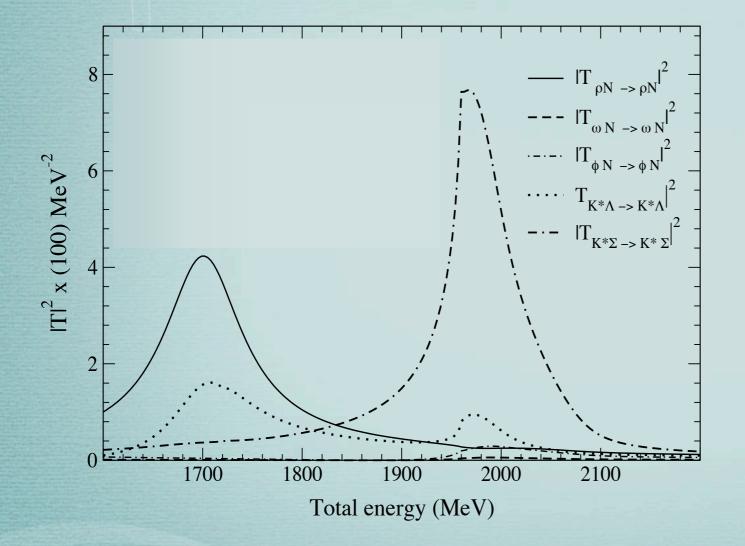
$$\begin{aligned} G &= i2M \int \frac{d^4q}{2\pi^4} \frac{1}{(P-q)^2 - M^2 + i\epsilon} \frac{1}{q^2 - m^2 + i\epsilon} \\ &= \frac{2M}{16\pi^2} \bigg\{ a(\mu) + ln \frac{M^2}{\mu^2} + \frac{m^2 - M^2 + s}{2s} ln \frac{m^2}{M^2} \\ &+ \frac{\bar{q}}{\sqrt{s}} \bigg[ln \left(s - (M^2 - m^2) + 2\bar{q}\sqrt{s} \right) - ln \left(-s + (M^2 - m^2) + 2\bar{q}\sqrt{s} \right) \\ &- ln \left(s - (M^2 - m^2) + 2\bar{q}\sqrt{s} \right) \bigg] \bigg\} \end{aligned}$$

But rho and K* mesons are quite wide!!

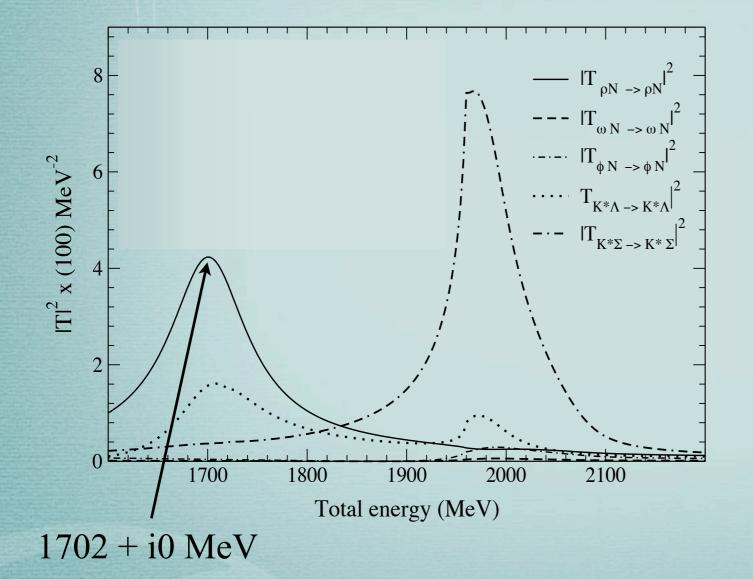
$$T = V + VGT$$

$$\tilde{G}(s) = \frac{1}{N} \int_{(m-2\Gamma_i)^2}^{(m+2\Gamma_i)^2} \mathrm{d}\tilde{m}^2 \left(-\frac{1}{\pi}\right)$$
$$\times \operatorname{Im} \frac{1}{\tilde{m}^2 - m^2 + \mathrm{i}m\Gamma(\tilde{m})} G(s, \tilde{m}^2, \tilde{M}_B^2),$$

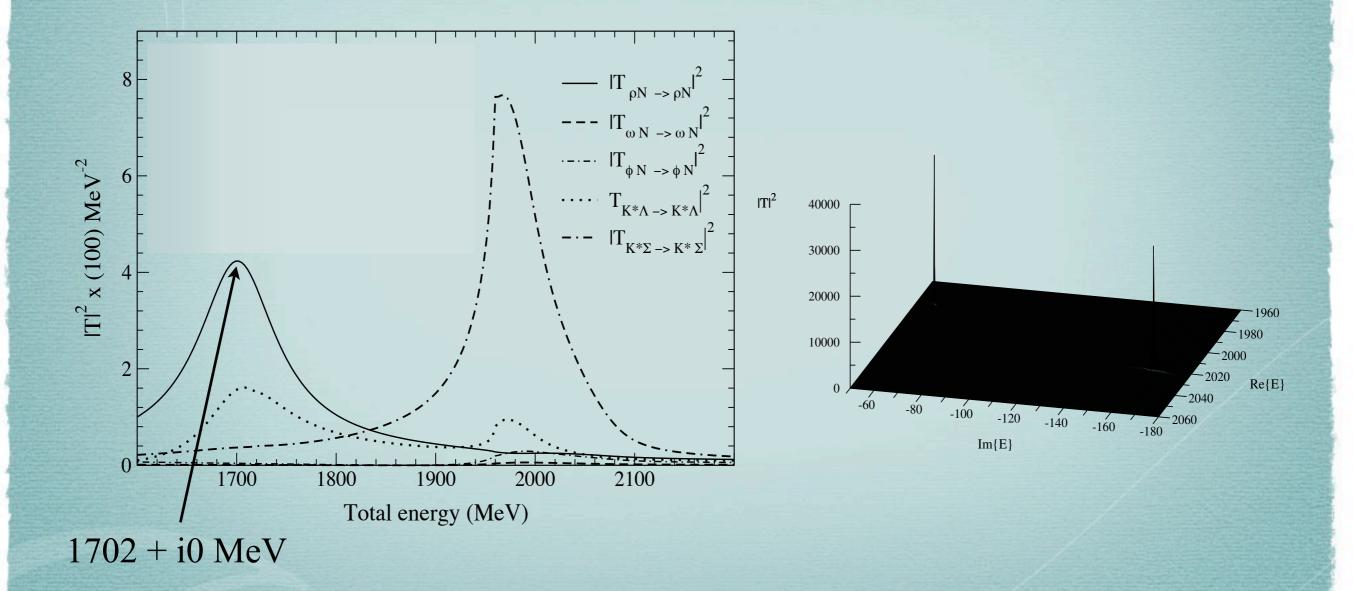
with

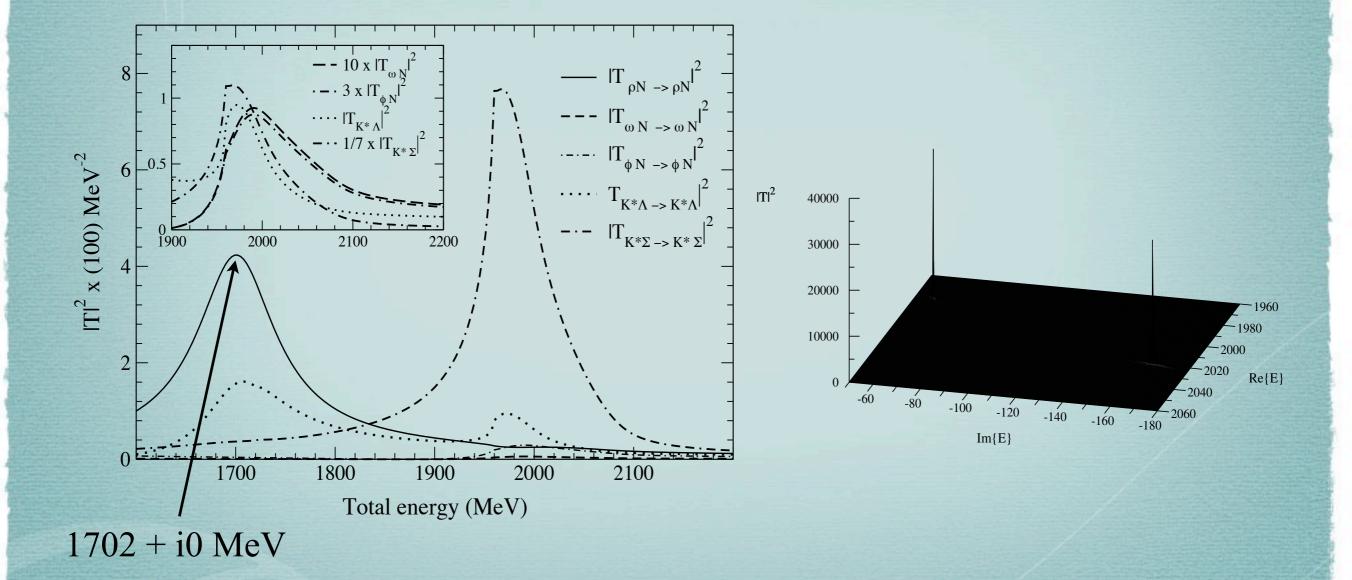

$$N = \int_{(m-2\Gamma_i)^2}^{(m+2\Gamma_i)^2} \mathrm{d}\tilde{m}^2 \left(-\frac{1}{\pi}\right) \operatorname{Im} \frac{1}{\tilde{m}^2 - m^2 + \mathrm{i}m\Gamma(\tilde{m})}$$

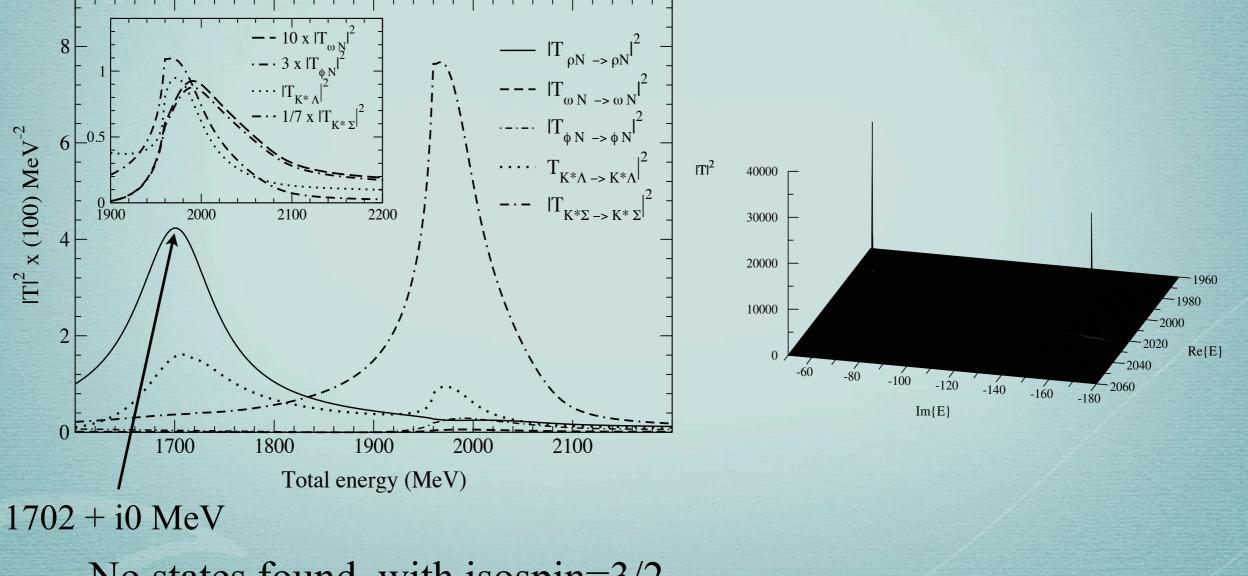
where, for example, for rho meson --> 2 pions


$$\Gamma(\tilde{m}) = \Gamma_{\rho} \frac{m_{\rho}^2}{\tilde{m}^2} \left(\frac{\tilde{m}^2 - 4m_{\pi}^2}{m_{\rho}^2 - 4m_{\pi}^2}\right)^{3/2} \theta(\tilde{m} - 2m_{\pi}).$$

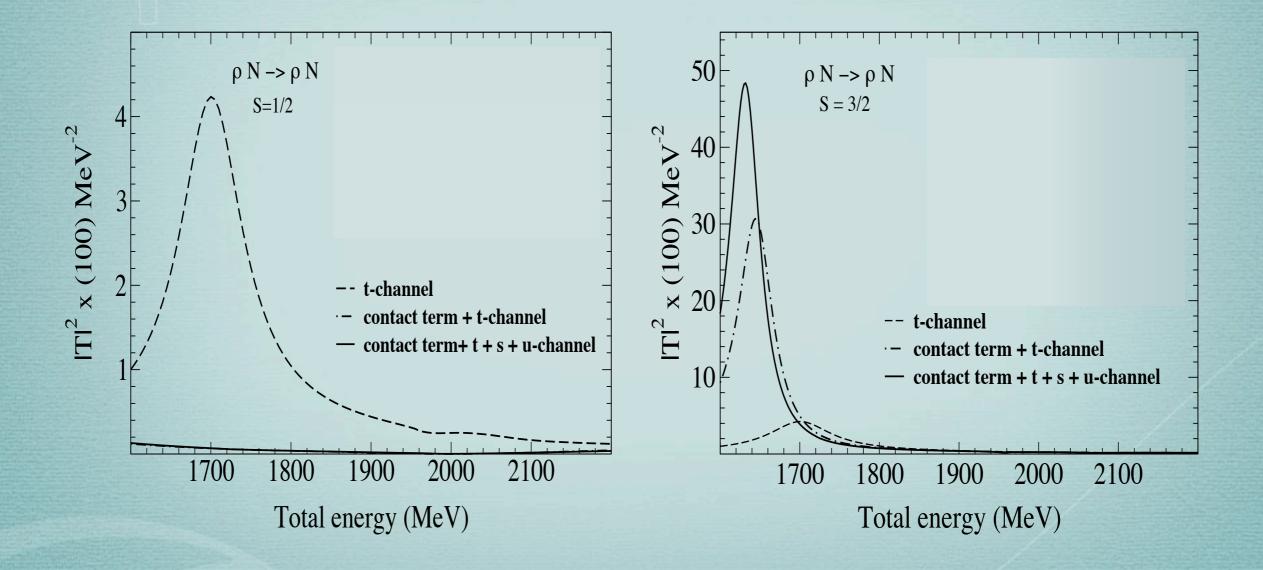
Ref: E. Oset and A. Ramos (EPJA 44, 445 (2010))


\bigcirc t-channel: Isospin=1/2, spin=1/2,3/2

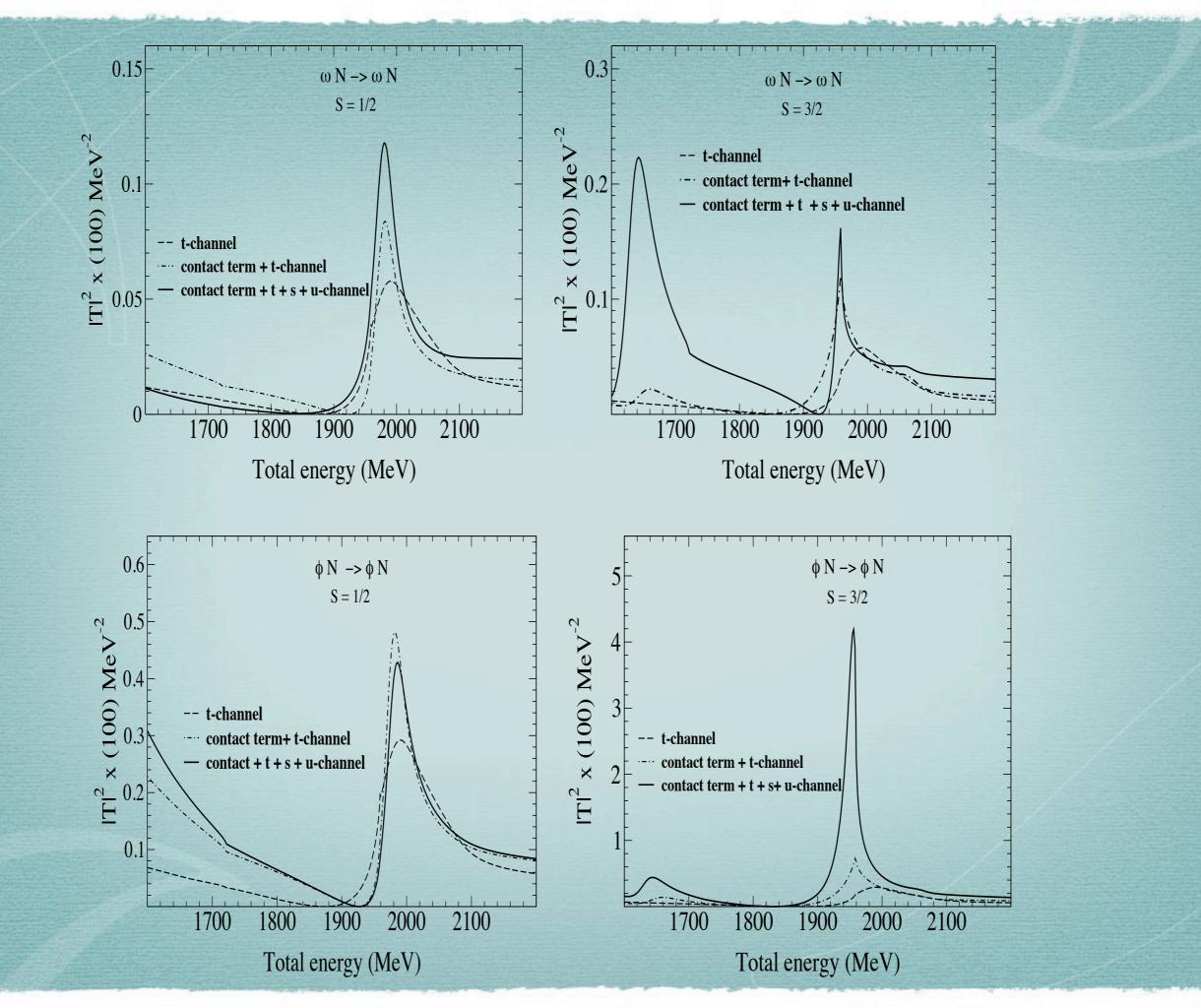

♀ t-channel: Isospin=1/2, spin=1/2,3/2

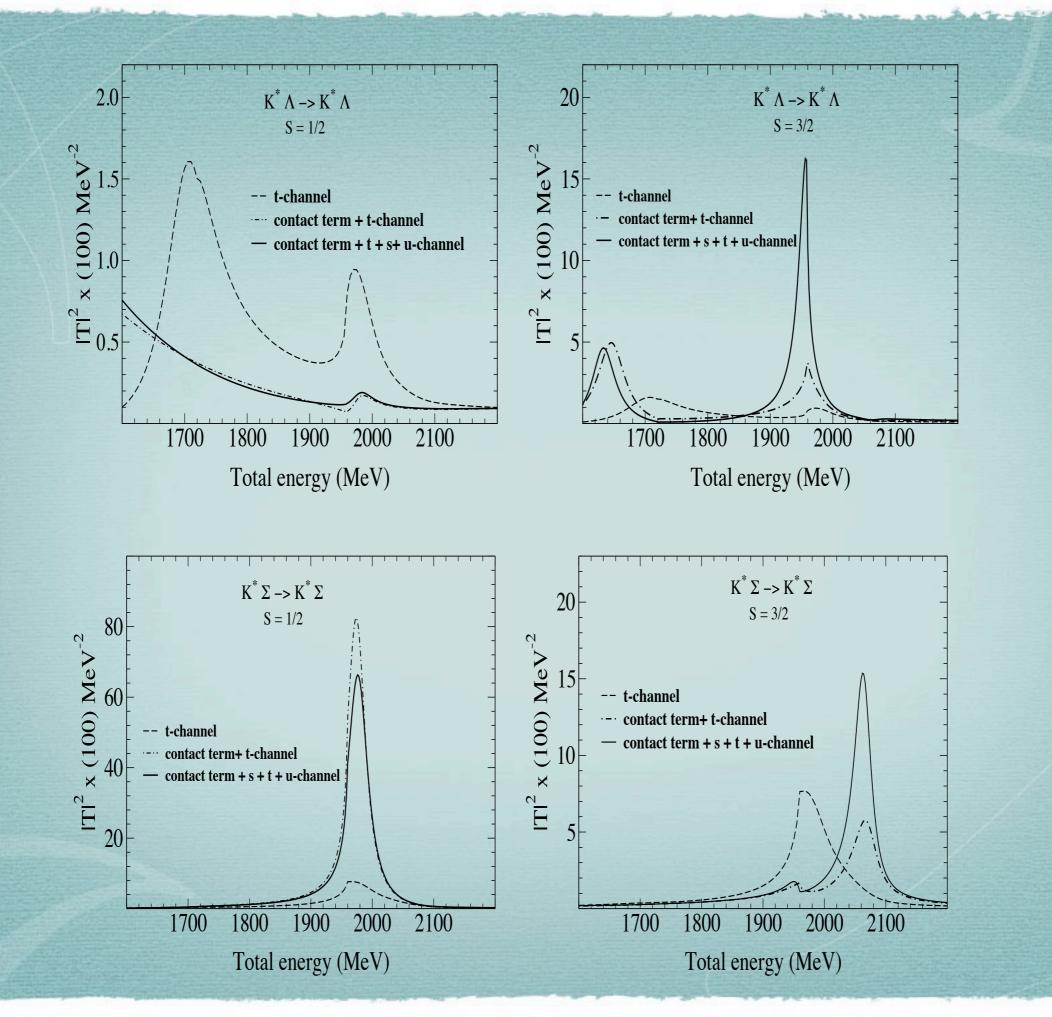

♀ t-channel: Isospin=1/2, spin=1/2,3/2

♀ t-channel: Isospin=1/2, spin=1/2,3/2

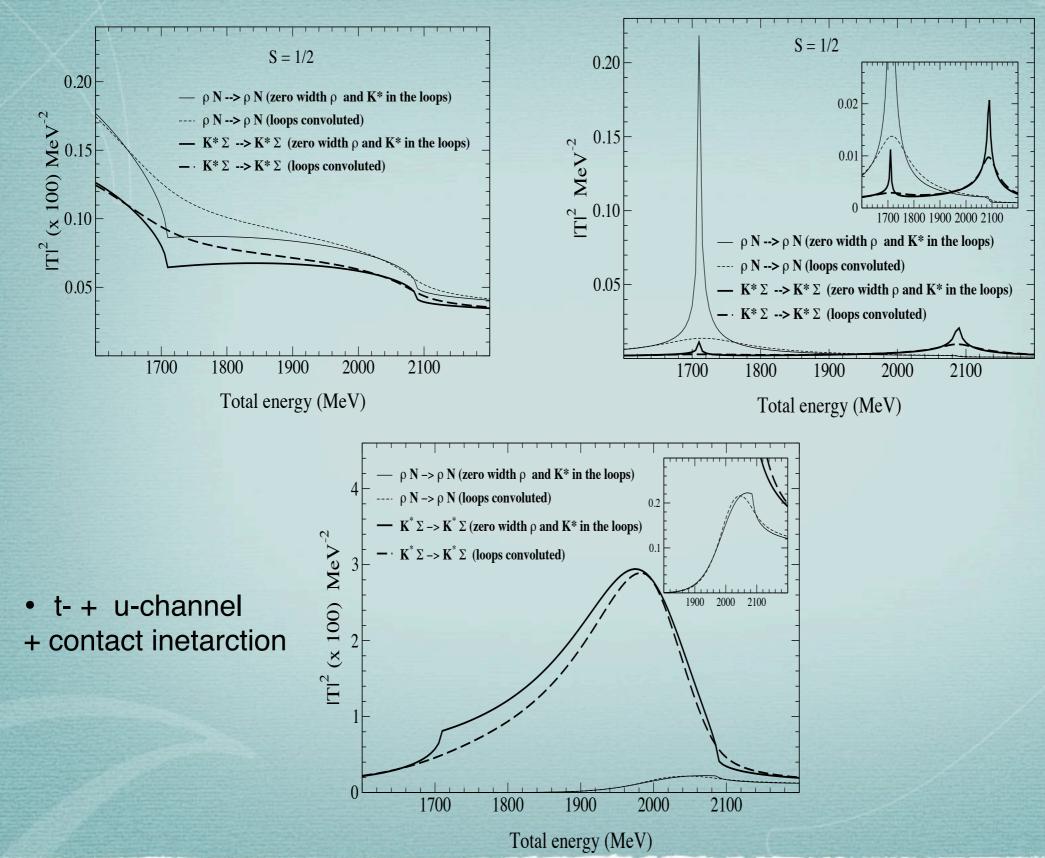


♀ t-channel: Isospin=1/2, spin=1/2,3/2




No states found with isospin=3/2.

Adding more diagrams: Isospin=1/2


 $\lambda = 650 \text{ MeV}$

Isospin 3/2:

• t-channel

Contact interaction

Summary:

- The tree-level contributions from the contact term obtained from hidden gauge Lagrangian and from the s- and u- channel exchange diagrams are not negligible.
- The degeneracy in the WT results gets lifted if the contribution from these different diagrams is added. This is something which should be expected when two particles with spin interact.
- States found and <u>tentative</u> correspondence to known resonances:

Isospin, Spin-parity	pole positions	States in PDG
1/2, 1/2-	1977 - i27	N* (2090)
1/2, 3/2-	1641 - i0	N* (1700)
1/2, 3/2-	2071 - i7	N* (2080)
3/2, 1/2-	2010 - i112	Δ(1900)

t-channel exchange					I=1/2		
m	ρΝ	ωN	ϕN		$K^*\Lambda$	$K^*\Sigma$	I=3/2
$V_t \sim -C_{ij}^t \frac{m}{2f_\pi^2} \frac{\rho_N}{\omega_N}$	2	0	0		$\frac{3}{2}$	$-\frac{1}{2}$	I=J/2
$\omega f_{\pi}^{2} 2 f_{\pi}^{2} \omega N$		0	0		$-\frac{3}{2}\frac{1}{\sqrt{3}}$	$-\frac{3}{2}\frac{1}{\sqrt{3}}$	$\rho N K^* \Sigma$
ϕN			0			$-\frac{3}{2}\left(-\sqrt{\frac{2}{3}}\right)$) $\rho N = -1 = -1$
$K^*\Lambda$	1				0	0	$K^*\Sigma$ -1
Extra K*2	E					2	
slides							
	$C_{ij}^{contact}$	ρN	ωN	ϕN	$K^*\Lambda$	$K^*\Sigma$	
Contact interaction: $V_{contact}^{1/2} \sim C_{ij}^{contact} \frac{m}{2f^2}$	ρN	(D+F)	0	0	$\frac{(D+3F)}{4}$	$-\frac{(F-D)}{4}$	$C_{ij}^{contact} \rho N \qquad K^* \Sigma$
$V_{contact} \sim C_{ij}^{contact} \overline{2f_{\pi}^2}$	ωN		0	0	$\boxed{\frac{-(D+3F)}{4\sqrt{3}}}$	$-\frac{\sqrt{3}(F-D)}{4}$	$\rho N \qquad -\frac{(D+F)}{2} \qquad \frac{(D-F)}{2}$
$V_{contact}^{3/2} \sim -C_{ij}^{contact} \frac{m}{4f_{\pi}^2}$	ϕN			0	$\frac{(D+3F)}{(2\sqrt{6})}$	$-\sqrt{\frac{3}{2}}\frac{(D-F)}{2}$	$K^*\Sigma \qquad \qquad -\frac{(D+F)}{2}$
						V 2 2	
	$K^*\Lambda$				$\frac{D}{2}$	$-\frac{D}{2}$	D = 2.4 F = 0.82
	$K^*\Sigma$					$\frac{(2F-D)}{2}$	

$$C_U^{1/2} = -C_{ij}^u \left(\frac{g^2}{2M_B - m_v}\right)$$

u-channel:

$$V_U^{3/2} = 2C_{ij}^u \left(\frac{g^2}{2M_B - m_v}\right)$$

$$\begin{tabular}{|c|c|c|c|c|} \hline C_{ij}^u & ρN & $K^*\Sigma$ \\ \hline ρN & $\frac{[(D+F)m+2M]^2}{8M^2}$ & $\frac{1}{8M^2} \left\{ \frac{-Dm}{3} [(D+3F)m+6M] \\ +[(F-D)m+2M] [Fm+2M] \right\}$ \\ \hline $K^*\Sigma$ & $\frac{((D+F)m+2M)^2}{8M^2}$ \\ \hline \end{tabular}$$

C^u_{ij}	ho N	ωN	ϕN	$K^*\Lambda$	$K^*\Sigma$	Î
ho N	$-\frac{[(D+F)m+2M]^2}{16M^2}$	$\frac{\sqrt{3}}{16M^2} * \\ [(D - 3F)m - 6M] * \\ [(D + F)m + 2M]$	0	$\frac{Dm * \left[(F - D)m + 2M \right]}{8M^2}$	$\frac{(Fm + 2M) [(F - D)m + 2M]}{4M^2}$ $\frac{Dm * [(D + 3F)m + 6M]}{24M^2}$	I=3/2
ωN		$\frac{[(D-3F)m-6M]^2}{16M^2}$	0	$-\frac{((3F - 2D)m + 6M)}{24\sqrt{3}M^2} * \\ ((D+3F)m+6M)$	$-\frac{\sqrt{3}((F-D)m+2M)(Fm+2M)}{8M^2}$	← I=1/2
ϕN			0	$-\frac{((D+3F)m+6M)^2}{(24\sqrt{6}M^2)}$	$-\sqrt{\frac{3}{2}}\frac{((F-D)m+2M)^2}{8M^2}$	
$K^*\Lambda$				$\frac{((D-3F)m - 6M)^2}{48M^2}$	$-\frac{((D-3F)m - 6M)((D+F)m + 2M)}{16M^2}$	
$K^*\Sigma$					$-\frac{((D+F)m+2M)^2}{16M^2}$	

s-channel:

$$V_S^{1/2} = 3C_{ij}^s \left(\frac{g^2}{m_v + 2M_B}\right)$$

I=1/2

C^s_{ij}	ho N	ωN	$K^*\Lambda$	$K^*\Sigma$
ρN	$\frac{3\left[(D+F)m - 2M\right]^2}{16M^2}$	$\frac{3\sqrt{3}\left[(D+F)m-2M\right]}{8M}$	$\frac{((D+F)m - 2M) \left[(D+3F)m - 6M \right]}{16M^2}$	$-\frac{3}{16M^2} [(D-F)m + 2M] * [(D+F)m - 2M]$
ωN		$\frac{9}{4}$	$\frac{\sqrt{3}((D+3F)m-6M)}{8M}$	$-\frac{3\sqrt{3}((D-F)m+2M)}{8M}$
$K^*\Lambda$			$\frac{((D+3F)m - 6M)^2}{48M^2}$	$\frac{((D+3F)m-6M)}{16M^{2}}*$ ((D-F)m+2M)
$K^*\Sigma$				$\frac{3((D-F)m+2M)^2}{16M^2}$